The Solutions of Some Riemann-Liouville Fractional Integral Equations

被引:9
|
作者
Kaewnimit, Karuna [1 ]
Wannalookkhee, Fongchan [1 ]
Nonlaopon, Kamsing [1 ]
Orankitjaroen, Somsak [2 ]
机构
[1] Khon Kaen Univ, Dept Math, Khon Kaen 40002, Thailand
[2] Mahidol Univ, Fac Sci, Dept Math, Bangkok 10400, Thailand
关键词
Laplace transform; fractional differential equations; fractional integral equations; Riemann-Liouville fractional integral; DIFFERENTIAL-EQUATIONS; CALCULUS OPERATORS;
D O I
10.3390/fractalfract5040154
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we propose the solutions of nonhomogeneous fractional integral equations of the form I0+3 sigma y(t)+a & BULL;I0+2 sigma y(t)+b & BULL;I0+sigma y(t)+c & BULL;y(t)=f(t), where I0+sigma is the Riemann-Liouville fractional integral of order sigma=1/3,1,f(t)=tn,tnet,n & ISIN;N boolean OR{0},t & ISIN;R+, and a,b,c are constants, by using the Laplace transform technique. We obtain solutions in the form of Mellin-Ross function and of exponential function. To illustrate our findings, some examples are exhibited.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] NONLINEAR RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONLOCAL ERDELYI-KOBER FRACTIONAL INTEGRAL CONDITIONS
    Thongsalee, Natthaphong
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (02) : 480 - 497
  • [22] Geometric Interpretation for Riemann-Liouville Fractional-Order Integral
    Bai, Lu
    Xue, Dingyu
    Meng, Li
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 3225 - 3230
  • [23] The Riemann-liouville operator to generate some integral inequalities
    El Farissi, Abdallah
    Dahmani, Zoubir
    Bouraoui, Yasmina Khati
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2011, 14 (04) : 445 - 452
  • [24] An e ffective method for solving nonlinear integral equations involving the Riemann-Liouville fractional operator
    Paul, Supriya Kumar
    Mishra, Lakshmi Narayan
    Mishra, Vishnu Narayan
    Baleanu, Dumitru
    AIMS MATHEMATICS, 2023, 8 (08): : 17448 - 17469
  • [25] TOPOLOGICAL DEGREE FOR SOME PARABOLIC EQUATIONS WITH RIEMANN-LIOUVILLE TIME-FRACTIONAL DERIVATIVES
    Charkaoui, Abderrahim
    Ben-loghfyry, Anouar
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2024, 64 (02) : 597 - 619
  • [26] Solution set for fractional differential equations with Riemann-Liouville derivative
    Yurilev Chalco-Cano
    Juan J. Nieto
    Abdelghani Ouahab
    Heriberto Román-Flores
    Fractional Calculus and Applied Analysis, 2013, 16 : 682 - 694
  • [27] Existence results for Riemann-Liouville fractional neutral evolution equations
    Liu, Yi-Liang
    Lv, Jing-Yun
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [28] Solution set for fractional differential equations with Riemann-Liouville derivative
    Chalco-Cano, Yurilev
    Nieto, Juan J.
    Ouahab, Abdelghani
    Roman-Flores, Heriberto
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (03) : 682 - 694
  • [29] Nonlinear Riemann-Liouville Fractional Differential Equations With Nonlocal Erdélyi-Kober Fractional Integral Conditions
    Natthaphong Thongsalee
    Sotiris K. Ntouyas
    Jessada Tariboon
    Fractional Calculus and Applied Analysis, 2016, 19 : 480 - 497
  • [30] A NOTE ON RIEMANN-LIOUVILLE FRACTIONAL SOBOLEV SPACES
    Carbotti, Alessandro
    Comi, Giovanni E.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (01) : 17 - 54