To investigate the performance of a new CT software generating rib unfolded images for improved detection of rib osteolyses in patients with multiple myeloma. One hundred sixteen patients who underwent whole-body reduced-dose multidetector computed tomography (WBRD-MDCT) for multiple myeloma diagnosis and during follow-up were retrospectively evaluated. Nonenhanced CT scans with 5- and 1-mm slice thickness were interpreted by two readers with focus on detection of rib involvement (location, number, fracture). Image analysis of "unfolded," 1-mm-based CT rib images was subsequently undertaken. We classified the number of lytic bone lesions into 0, 1, 2, < 5, < 10 and a parts per thousand yen10. For all three data sets the reading time was registered. An approximated sum of 6,727 myeloma-related rib lesions was found. On a patient-based analysis, CT (5 mm), CT (1 mm) and CT (1 mm "unfolded rib") yielded a sensitivity, specificity and accuracy of 79.7/94.7/87.1, 88.1/93/90.5 and 98.3/96.5/97.4, respectively. In a lesion-based analysis, the sensitivity, specificity and accuracy of the three evaluations were 69.7/87.2/70.5, 79.8/55.9/78 and 96.5/89.7/96.1. Mean reading time for 5 mm/1 mm axial images and unfolded images was 178.7/215.1/90.8 s, respectively. The generation of "unfolded rib" images improves detection of rib involvement in patients with multiple myeloma and significantly reduces reading time.