A Variational Bayesian Approximation Approach via a Sparsity Enforcing Prior in Acoustic Imaging

被引:0
作者
Chu, Ning [1 ]
Mohammad-Djafari, Ali [1 ]
Gac, Nicolas [1 ]
Picheral, Jose [2 ]
机构
[1] Univ Paris 11, SUPELEC, CNRS, Lab Signaux & Syst L2S,UMR 8506, 3 Rue Joliot Curie, F-91192 Gif Sur Yvette, France
[2] SUPELEC, Dept Signal Syst Elect, 3 Rue Joliot Curie, F-91192 Gif Sur Yvette, France
来源
2014 13TH WORKSHOP ON INFORMATION OPTICS (WIO) | 2014年
关键词
Acoustic imaging; Variational Bayesian Approximation; Student's-t prior; non-Gaussian noises; SUPERRESOLUTION APPROACH; DECONVOLUTION; MODELS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Acoustic imaging is an advanced technique for acoustic source localization and power reconstruction from limited noisy measurements at microphone sensors. To solve this ill-posed inverse problem, the Bayesian inference methods using proper prior knowledge have been widely investigated. In this paper, we propose to use a hierarchical Variational Bayesian Approximation for the robust acoustic imaging. And we explore the Student's-t priors with heavy tails to enforce source sparsity and non-Gaussian noises, so that we can achieve the super spatial resolution and wide dynamic range of source powers. In addition, proposed approach is validated by simulations and real data from wind tunnel in automobile industry.
引用
收藏
页数:4
相关论文
共 11 条
[1]   A Bayesian approach to sound source reconstruction: Optimal basis, regularization, and focusing [J].
Antoni, Jerome .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2012, 131 (04) :2873-2890
[2]   A deconvolution approach for the mapping of acoustic sources (DAMAS) determined from phased microphone arrays [J].
Brooks, Thomas F. ;
Humphreys, William M. .
JOURNAL OF SOUND AND VIBRATION, 2006, 294 (4-5) :856-879
[3]   Source localization and beamforming [J].
Chen, JC ;
Yao, K ;
Hudson, RE .
IEEE SIGNAL PROCESSING MAGAZINE, 2002, 19 (02) :30-39
[4]   A robust super-resolution approach with sparsity constraint in acoustic imaging [J].
Chu, Ning ;
Picheral, Jose ;
Mohammad-djafari, Ali ;
Gac, Nicolas .
APPLIED ACOUSTICS, 2014, 76 :197-208
[5]   Robust Bayesian super-resolution approach via sparsity enforcing a priori for near-field aeroacoustic source imaging [J].
Chu, Ning ;
Mohammad-Djafari, Ali ;
Picheral, Jose .
JOURNAL OF SOUND AND VIBRATION, 2013, 332 (18) :4369-4389
[6]   An introduction to variational methods for graphical models [J].
Jordan, MI ;
Ghahramani, Z ;
Jaakkola, TS ;
Saul, LK .
MACHINE LEARNING, 1999, 37 (02) :183-233
[7]  
Massa A., IEEE T ANTENNAS PROP, V59
[8]   Bayesian approach with prior models which enforce sparsity in signal and image processing [J].
Mohammad-Djafari, Ali .
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2012,
[9]  
Oliveri G., GEOSCIENCE REMOTE SE, V49
[10]   Variational Bayesian Sparse Kernel-Based Blind Image Deconvolution With Student's-t Priors [J].
Tzikas, Dimitris G. ;
Likas, Aristidis C. ;
Galatsanos, Nikolaos P. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (04) :753-764