Approximation of convex bodies by centrally symmetric bodies

被引:17
作者
Lassak, M [1 ]
机构
[1] ATR, Inst Matemat & Fizyki, PL-85796 Bydgoszcz, Poland
关键词
convex body; approximation; affine transformation; volume; Banach-Mazur distance;
D O I
10.1023/A:1005055415136
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present an analog of the well-known theorem of F. John about the ellipsoid of maximal volume contained in a convex body. Let C be a convex body and let D be a centrally symmetric convex body in the Euclidean d-space. We prove that if D-l is an affine image of D of maximal possible volume contained in C, then C a subset of the homothetic copy of D-l with the ratio 2d - 1 and the homothety center in the center of D-l. The ratio 2d - 1 cannot be lessened as a simple example shows.
引用
收藏
页码:63 / 68
页数:6
相关论文
共 9 条
[1]  
GIANNOPOULOS A, 1995, GEOMETRIC ASPECTS FU, P67
[2]  
Grunbaum B., 1963, P S PURE MATH, VVII, P233, DOI 10.1090/pspum/007/0156259
[3]  
JOHN E, 1948, COURANT ANNIVERSARY, P187
[4]  
LASSAK M, 1989, J LOND MATH SOC, V40, P369
[5]  
LASSAK M, IN PRESS DISCRETE CO
[6]  
Lassak M., 1992, J GEOM, V44, P11
[7]  
Lindenstrauss J., 1993, HDB CONVEX GEOMETRY, P1149
[8]  
Pelczynski A, 1983, P INT C MATH 1982, P237
[9]   SPACES WITH LARGE DISTANCE TO L-INFINITY-N AND RANDOM MATRICES [J].
SZAREK, SJ .
AMERICAN JOURNAL OF MATHEMATICS, 1990, 112 (06) :899-942