Early events in the elicitation of plant defence

被引:205
作者
Ebel, J [1 ]
Mithöfer, A [1 ]
机构
[1] Univ Munich, Inst Bot, D-80638 Munich, Germany
关键词
elicitor; plant defence; putative elicitor receptors; signal transduction;
D O I
10.1007/s004250050409
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plants successfully use inducible defence mechanisms to combat potential pathogens. Elicitors are signaling compounds that stimulate any of such defence responses. Recent progress in the isolation of pure elicitors has made possible investigations on elicitor-binding proteins which might function as receptors in signal transduction pathways that ultimately activate the defences. The elicitor-binding sites studied so far show a high degree of ligand specificity, as do the candidate binding proteins identified for some of the ligands. Following elicitor perception, a number of rapid reactions are detectable in plant cells, including enhanced ion fluxes across the plasma membrane, formation of reactive oxygen intermediates, changes in protein phosphorylation, and lipid oxidation. Intriguing questions arising from these observations are whether the elicitor-binding proteins constitute receptors in plant defence signaling and whether any of the rapid events participate in signal transduction during defence activation.
引用
收藏
页码:335 / 348
页数:14
相关论文
共 177 条
[1]   OLIGOSACCHARINS [J].
ALDINGTON, S ;
FRY, SC .
ADVANCES IN BOTANICAL RESEARCH, VOL 19, 1993, 19 :1-101
[2]  
Alfano JR, 1996, PLANT CELL, V8, P1683, DOI 10.1105/tpc.8.10.1683
[3]   Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells [J].
Allan, AC ;
Fluhr, R .
PLANT CELL, 1997, 9 (09) :1559-1572
[4]  
Anderson A.J., 1989, PLANT MICROBE INTERA, P87
[5]   POPA1, A PROTEIN WHICH INDUCES A HYPERSENSITIVITY-LIKE RESPONSE ON SPECIFIC PETUNIA GENOTYPES, IS SECRETED VIA THE HRP PATHWAY OF PSEUDOMONAS-SOLANACEARUM [J].
ARLAT, M ;
VANGIJSEGEM, F ;
HUET, JC ;
PERNOLLET, JC ;
BOUCHER, CA .
EMBO JOURNAL, 1994, 13 (03) :543-553
[6]   Syringolide 1 triggers Ca2+ influx, K+ efflux, and extracellular alkalization in soybean cells carrying the disease-resistance gene Rpg4 [J].
Atkinson, MM ;
Midland, SL ;
Sims, JJ ;
Keen, NT .
PLANT PHYSIOLOGY, 1996, 112 (01) :297-302
[7]   HOST-PATHOGEN INTERACTIONS .10. FRACTIONATION AND BIOLOGICAL-ACTIVITY OF AN ELICITOR ISOLATED FROM MYCELIAL WALLS OF PHYTOPHTHORA-MEGASPERMA VAR SOJAE [J].
AYERS, AR ;
EBEL, J ;
VALENT, B ;
ALBERSHEIM, P .
PLANT PHYSIOLOGY, 1976, 57 (05) :760-765
[8]   ELICITOR-INDUCED CHANGES IN CA2+ INFLUX, K+ EFFLUX, AND 4-HYDROXYBENZOIC ACID SYNTHESIS IN PROTOPLASTS OF DAUCUS-CAROTA L [J].
BACH, M ;
SCHNITZLER, JP ;
SEITZ, HU .
PLANT PHYSIOLOGY, 1993, 103 (02) :407-412
[9]   A NEW ELICITOR OF THE HYPERSENSITIVE RESPONSE IN TOBACCO - A FUNGAL GLYCOPROTEIN ELICITS CELL-DEATH, EXPRESSION OF DEFENSE GENES, PRODUCTION OF SALICYLIC-ACID, AND INDUCTION OF SYSTEMIC ACQUIRED-RESISTANCE [J].
BAILLIEUL, F ;
GENETET, I ;
KOPP, M ;
SAINDRENAN, P ;
FRITIG, B ;
KAUFFMANN, S .
PLANT JOURNAL, 1995, 8 (04) :551-560
[10]   Occurrence among Phytophthora species of a glycoprotein eliciting a hypersensitive response in tobacco and its relationships with elicitins [J].
Baillieul, F ;
Fritig, B ;
Kauffmann, S .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1996, 9 (03) :214-216