EM-WaveHoltz: A Flexible Frequency-Domain Method Built From Time-Domain Solvers

被引:5
作者
Peng, Zhichao [1 ]
Appelo, Daniel [1 ,2 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USA
关键词
Frequency-domain analysis; Time-domain analysis; Maxwell equations; Mathematical models; Controllability; Boundary conditions; Iterative methods; Discontinuous Galerkin time-domain (DGTD) methods; electromagnetic analysis; finite-difference time-domain (FDTD) methods; frequency-domain analysis; iterative method; positive definite; time-domain analysis; DECOMPOSITION METHOD; SWEEPING PRECONDITIONER; CONTROLLABILITY METHODS; MAXWELL EQUATIONS; APPROXIMATION; GRIDS;
D O I
10.1109/TAP.2022.3161448
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel approach to computing time-harmonic solutions of Maxwell's equations by time-domain simulations is presented. The method, electromagnetic-WaveHoltz (EM-WaveHoltz), results in a positive definite system of equations, which makes it amenable to iterative solution with the conjugate gradient method or with generalized minimal residual method (GMRES). Theoretical results guaranteeing the convergence of the method away from resonances are presented. Numerical examples illustrating the properties of EM-WaveHoltz are given.
引用
收藏
页码:5659 / 5671
页数:13
相关论文
共 37 条
[1]   A multiplicative Calderon preconditioner for the electric field integral equation [J].
Andriulli, Francesco P. ;
Cools, Kristof ;
Bagci, Hakan ;
Olyslager, Femke ;
Buffa, Annalisa ;
Christiansen, Snorre ;
Michielssen, Eric .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2008, 56 (08) :2398-2412
[2]  
[Anonymous], 1993, Electron. Trans. Numer. Anal.
[3]  
[Anonymous], MEEP
[4]   WAVEHOLTZ: ITERATIVE SOLUTION OF THE HELMHOLTZ EQUATION VIA THE WAVE EQUATION [J].
Appelo, Daniel ;
Garcia, Fortino ;
Runborg, Olof .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (04) :A1950-A1983
[5]  
Assous F., 2018, APPL MATH SCI
[6]   A high-order accurate scheme for Maxwell's equations with a Generalized Dispersive Material (GDM) model and material interfaces [J].
Banks, Jeffrey W. ;
Buckner, Benjamin B. ;
Henshaw, William D. ;
Jenkinson, Michael J. ;
Kildishev, Alexander V. ;
Kovacic, Gregor ;
Prokopeva, Ludmila J. ;
Schwendeman, Donald W. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 412
[7]   DOMAIN DECOMPOSITION PRECONDITIONING FOR THE HIGH-FREQUENCY TIME-HARMONIC MAXWELL EQUATIONS WITH ABSORPTION [J].
Bonazzoli, M. ;
Dolean, V ;
Graham, I. G. ;
Spence, E. A. ;
Tournier, R-H .
MATHEMATICS OF COMPUTATION, 2019, 88 (320) :2559-2604
[8]  
Bristeau M. O., 1999, Tech. Report RR-3607.
[9]   Controllability methods for the computation of time-periodic solutions;: application to scattering [J].
Bristeau, MO ;
Glowinski, R ;
Périaux, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 147 (02) :265-292
[10]  
Chew W C., 2001, Fast and Efficient Algorithms in Computational Electromagnetics