Propagation of radially polarized multi-cosine Gaussian Schell-model beams in non-Kolmogorov turbulence

被引:22
|
作者
Tang, Miaomiao [1 ]
Zhao, Daomu [2 ]
Li, Xinzhong [1 ]
Wang, Jingge [1 ]
机构
[1] Henan Univ Sci & Technol, Sch Phys & Engn, Luoyang 471023, Peoples R China
[2] Zhejiang Univ, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Radially polarized multi-cosine Gaussian Shell-model beams; Propagation; Non-Kolmogorov turbulence; Statistical properties; PARTIALLY COHERENT BEAMS; ATMOSPHERIC-TURBULENCE; ELECTROMAGNETIC BEAMS; SPATIAL COHERENCE; FIELDS;
D O I
10.1016/j.optcom.2017.09.067
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Recently, we introduced a new class of radially polarized beams with multi-cosine Gaussian Schellmodel(MCGSM) correlation function based on the partially coherent theory (Tang et al., 2017). In this manuscript, we extend the work to study the statistical properties such as the spectral density, the degree of coherence, the degree of polarization, and the state of polarization of the beam propagating in isotropic turbulence with a non-Kolmogorov power spectrum. Analytical formulas for the cross-spectral density matrix elements of a radially polarized MCGSM beam in non-Kolmogorov turbulence are derived. Numerical results show that lattice-like intensity pattern of the beam, which keeps propagation-invariant in free space, is destroyed by the turbulence when it passes at sufficiently large distances from the source. It is also shown that the polarization properties are mainly affected by the source correlation functions, and change in the turbulent statistics plays a relatively small effect. In addition, the polarization state exhibits self-splitting property and each beamlet evolves into radially polarized structure upon propagation. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:392 / 397
页数:6
相关论文
共 50 条
  • [1] Focusing properties of radially polarized multi-cosine Gaussian correlated Schell-model beams
    Tang, Miaomiao
    Zhao, Daomu
    Li, Xinzhong
    Li, Hehe
    OPTICS COMMUNICATIONS, 2017, 396 : 249 - 256
  • [2] Propagation factors of cosine-Gaussian-correlated Schell-model beams in non-Kolmogorov turbulence
    Xu, Hua-Feng
    Zhang, Zhou
    Qu, Jun
    Huang, Wei
    OPTICS EXPRESS, 2014, 22 (19): : 22479 - 22489
  • [3] Propagation properties of Gaussian Schell-model array beams in non-Kolmogorov turbulence
    Song, Zhenzhen
    Liu, Zhengjun
    Zhou, Keya
    Sun, Qiongge
    Liu, Shutian
    JOURNAL OF OPTICS, 2016, 18 (10)
  • [4] Propagation factors of multi-sinc Schell-model beams in non-Kolmogorov turbulence
    Song, Zhenzhen
    Liu, Zhengjun
    Zhou, Keya
    Sun, Qiongge
    Liu, Shutian
    OPTICS EXPRESS, 2016, 24 (02): : 1804 - 1813
  • [5] Propagation properties of radially polarized multi-Gaussian Schell-model beams in oceanic turbulence
    Song, Zhenzhen
    Han, Zhiyuan
    Ye, Jingfei
    Liu, Zhengjun
    Liu, Shutian
    Liu, Bo
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2019, 36 (10) : 1719 - 1726
  • [6] Propagation factor and beam wander of electromagnetic Gaussian Schell-model array beams in non-Kolmogorov turbulence
    Zhang, Biling
    Xu, Yonggen
    Wang, Xiaoyan
    Dan, Youquan
    OSA CONTINUUM, 2019, 2 (01) : 162 - 174
  • [7] Propagation of Rectangular Multi-Gaussian Schell-Model Array Beams through Free Space and Non-Kolmogorov Turbulence
    Ma, Xiaolu
    Liu, Dajun
    Wang, Yaochuan
    Yin, Hongming
    Zhong, Haiyang
    Wang, Guiqiu
    APPLIED SCIENCES-BASEL, 2020, 10 (02):
  • [8] Evolution properties of Bessel-Gaussian Schell-model beams in non-Kolmogorov turbulence
    Wang, Xiaoyang
    Yao, Mingwu
    Qiu, Zhiliang
    Yi, Xiang
    Liu, Zengji
    OPTICS EXPRESS, 2015, 23 (10): : 12508 - 12523
  • [9] Evolution properties of twisted Hermite Gaussian Schell-model beams in non-Kolmogorov turbulence
    Zhang, Chao
    Zhou, Zhenglan
    Xu, Huafeng
    Zhou, Zhengxian
    Han, Yashuai
    Yuan, Yangsheng
    Qu, Jun
    OPTICS EXPRESS, 2022, 30 (03): : 4071 - 4083
  • [10] Propagation factor of electromagnetic concentric rings Schell-model beams in non-Kolmogorov turbulence
    Song, Zhen-Zhen
    Liu, Zheng-Jun
    Zhou, Ke-Ya
    Sun, Qiong-Ge
    Liu, Shu-Tian
    CHINESE PHYSICS B, 2017, 26 (02)