A direct adaptive Poisson solver of arbitrary order accuracy

被引:58
作者
Greengard, L
Lee, JY
机构
[1] Courant Inst. of Math. Sciences, New York University, New York
基金
美国国家科学基金会;
关键词
D O I
10.1006/jcph.1996.0103
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a direct, adaptive solver for the Poisson equation which can achieve any prescribed order of accuracy. It is based on a domain decomposition approach using local spectral approximation, as well as potential theory and the fast multipole method. In two space dimensions, the algorithm requires O(NK) work, where N is the number of discretization points and K is the desired order Of accuracy. (C) 1996 Academic Press, Inc.
引用
收藏
页码:415 / 424
页数:10
相关论文
共 33 条
[1]  
ADNERSON C, 1989, DOMAIN DECOMPOSITION
[2]  
ALMGREN AS, 1993, P 11 AIAA COMP FLUID, P530
[3]  
[Anonymous], 1983, 6 COMP FLUID DYN C D
[4]  
[Anonymous], 1989, DOMAIN DECOMPOSITION
[5]  
BAUM JD, 1992, 920448 AIAA
[6]   LOCAL ADAPTIVE MESH REFINEMENT FOR SHOCK HYDRODYNAMICS [J].
BERGER, MJ ;
COLELLA, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 82 (01) :64-84
[7]   ADAPTIVE MESH REFINEMENT FOR HYPERBOLIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
BERGER, MJ ;
OLIGER, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 53 (03) :484-512
[8]  
BRANDT A, 1977, MATH COMPUT, V31, P330
[9]   DIRECT METHODS FOR SOLVING POISSONS EQUATIONS [J].
BUZBEE, BL ;
GOLUB, GH ;
NIELSON, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1970, 7 (04) :627-&
[10]  
Canuto C., 2012, SPECTRAL METHODS FLU