Experimental modeling of PEM fuel cells using a new improved seagull optimization algorithm

被引:168
作者
Cao, Yan [1 ]
Li, Yiqing [1 ]
Zhang, Geng [1 ]
Jermsittiparsert, Kittisak [2 ]
Razmjooy, Navid [3 ]
机构
[1] Xian Technol Univ, Sch Mechatron Engn, Xian 710021, Shaanxi, Peoples R China
[2] Chulalongkorn Univ, Social Res Inst, Bangkok 10330, Thailand
[3] Tsfresh Univ, Dept Elect Engn, Tafresh, Iran
关键词
Seagull optimization algorithm; Levy flight; Proton exchange membrane fuel cells; Modeling; STEADY-STATE; OPTIMAL PARAMETERS; POWER-SYSTEM; ENERGY; IDENTIFICATION; MANAGEMENT;
D O I
10.1016/j.egyr.2019.11.013
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study proposes an optimal model to design and simulate the proton exchange membrane fuel cell (PEMFC) systems. The purpose of this paper is to present an improved version of seagull optimization algorithm for optimal parameter identification of the PEMFC stacks. The new algorithm uses the Levy flight mechanism to give faster convergence rates. The sum of the squared error between the empirical values and achieved optimal model is analyzed based on two empirical PEMFC models including BCS 500-W and NedStack PS6. This analysis is performed to show the potential of the presented method by considering different conditions. Simulation results are compared with several optimization algorithms and show the algorithm's superiority in terms of the solutions quality and the convergence speed. (C) 2019 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:1616 / 1625
页数:10
相关论文
共 55 条
[1]   Robust adaptive neural network control for PEM fuel cell [J].
Abbaspour, Alireza ;
Khalilnejad, Arash ;
Chen, Zheng .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (44) :20385-20395
[2]   Multi-objective energy management in a micro-grid [J].
Aghajani, Gholamreza ;
Ghadimi, Noradin .
ENERGY REPORTS, 2018, 4 :218-225
[3]   An Analytical Methodology for Assessment of Smart Monitoring Impact on Future Electric Power Distribution System Reliability [J].
Ahadi, Amir ;
Ghadimi, Noradin ;
Mirabbasi, Davar .
COMPLEXITY, 2015, 21 (01) :99-113
[4]   Effective parameters' identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer [J].
Ali, M. ;
El-Hameed, M. A. ;
Farahat, M. A. .
RENEWABLE ENERGY, 2017, 111 :455-462
[5]  
[Anonymous], 2018, OPTIMIZING PEMFC MOD
[6]  
[Anonymous], 2016, MAJLESI J ELECT ENG
[7]  
[Anonymous], 2018, 2018 IEEE INT C ENV
[8]   Analytical modelling and experimental validation of proton exchange membrane electrolyser for hydrogen production [J].
Aouali, F. Z. ;
Becherif, M. ;
Ramadan, H. S. ;
Emziane, M. ;
Khellaf, A. ;
Mohammedi, K. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (02) :1366-1374
[9]  
Avise JC, 2017, LIFE COUPLE BIRDS AA, P41
[10]  
Bansal JC, 2019, STUD COMPUT INTELL, V779, P11, DOI 10.1007/978-3-319-91341-4_2