Image quality assessment of pediatric chest and abdomen CT by deep learning reconstruction

被引:27
作者
Yoon, Haesung
Kim, Jisoo
Lim, Hyun Ji
Lee, Mi-Jung [1 ]
机构
[1] Yonsei Univ, Severance Hosp, Coll Med, Dept Radiol, 50-1 Yonsei Ro, Seoul 03722, South Korea
关键词
Pediatric; CT; Image quality; Deep learning; Iterative reconstruction; STATISTICAL ITERATIVE RECONSTRUCTION; RADIATION-DOSE REDUCTION; FILTERED BACK-PROJECTION; ABDOMINAL CT; ASIR TECHNIQUE; NOISE;
D O I
10.1186/s12880-021-00677-2
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background Efforts to reduce the radiation dose have continued steadily, with new reconstruction techniques. Recently, image denoising algorithms using artificial neural networks, termed deep learning reconstruction (DLR), have been applied to CT image reconstruction to overcome the drawbacks of iterative reconstruction (IR). The purpose of our study was to compare the objective and subjective image quality of DLR and IR on pediatric abdomen and chest CT images. Methods This retrospective study included pediatric body CT images from February 2020 to October 2020, performed on 51 patients (34 boys and 17 girls; age 1-18 years). Non-contrast chest CT (n = 16), contrast-enhanced chest CT (n = 12), and contrast-enhanced abdomen CT (n = 23) images were included. Standard 50% adaptive statistical iterative reconstruction V (ASIR-V) images were compared to images with 100% ASIR-V and DLR at medium and high strengths. Attenuation, noise, contrast to noise ratio (CNR), and signal to noise (SNR) measurements were performed. Overall image quality, artifacts, and noise were subjectively assessed by two radiologists using a four-point scale (superior, average, suboptimal, and unacceptable). A phantom scan was performed including the dose range of the clinical images used in our study, and the noise power spectrum (NPS) was calculated. Quantitative and qualitative parameters were compared using repeated-measures analysis of variance (ANOVA) with Bonferroni correction and Wilcoxon signed-rank tests. Results DLR had better CNR and SNR than 50% ASIR-V in both pediatric chest and abdomen CT images. When compared with 50% ASIR-V, high strength DLR was associated with noise reduction in non-contrast chest CT (33.0%), contrast-enhanced chest CT (39.6%), and contrast-enhanced abdomen CT (38.7%) with increases in CNR at 149.1%, 105.8%, and 53.1% respectively. The subjective assessment of overall image quality and the noise was also better on DLR images (p < 0.001). However, there was no significant difference in artifacts between reconstruction methods. From NPS analysis, DLR methods showed a pattern of reducing the magnitude of noise while maintaining the texture. Conclusion Compared with 50% ASIR-V, DLR improved pediatric body CT images with significant noise reduction. However, artifacts were not improved by DLR, regardless of strength.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Image quality assessment of an iterative reconstruction algorithm applied to abdominal CT imaging
    Funama, Yoshinori
    Taguchi, Katsuyuki
    Utsunomiya, Daisuke
    Oda, Seitaro
    Katahira, Kazuhiro
    Tokuyasu, Shinichi
    Yamashita, Yasuyuki
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2014, 30 (04): : 527 - 534
  • [22] Assessment of Image Quality of Coronary CT Angiography Using Deep Learning-Based CT Reconstruction: Phantom and Patient Studies
    Jeon, Pil-Hyun
    Jeon, Sang-Hyun
    Ko, Donghee
    An, Giyong
    Shim, Hackjoon
    Otgonbaatar, Chuluunbaatar
    Son, Kihong
    Kim, Daehong
    Ko, Sung Min
    Chung, Myung-Ae
    DIAGNOSTICS, 2023, 13 (11)
  • [23] Image Quality Assessment of Deep Learning Image Reconstruction in Torso Computed Tomography Using Tube Current Modulation
    Takeuchi, Kazuhiro
    Ide, Yasuhiro
    Mori, Yuichiro
    Uehara, Yusuke
    Sukeishi, Hiroshi
    Goto, Sachiko
    ACTA MEDICA OKAYAMA, 2023, 77 (01) : 45 - 55
  • [24] Assessment of deep learning image reconstruction (DLIR) on image quality in pediatric cardiac CT datasets type of manuscript: Original research
    Cho, Hyun-Hae
    Lee, So Mi
    You, Sun Kyoung
    PLOS ONE, 2024, 19 (08):
  • [25] Deep learning image reconstruction for improving image quality of contrast-enhanced dual-energy CT in abdomen
    Mineka Sato
    Yasutaka Ichikawa
    Kensuke Domae
    Kazuya Yoshikawa
    Yoshinori Kanii
    Akio Yamazaki
    Naoki Nagasawa
    Motonori Nagata
    Masaki Ishida
    Hajime Sakuma
    European Radiology, 2022, 32 : 5499 - 5507
  • [26] Evaluation of Image Quality and Detectability of Deep Learning Image Reconstruction (DLIR) Algorithm in Single- and Dual-energy CT
    Zhong, Jingyu
    Shen, Hailin
    Chen, Yong
    Xia, Yihan
    Shi, Xiaomeng
    Lu, Wei
    Li, Jianying
    Xing, Yue
    Hu, Yangfan
    Ge, Xiang
    Ding, Defang
    Jiang, Zhenming
    Yao, Weiwu
    JOURNAL OF DIGITAL IMAGING, 2023, 36 (04) : 1390 - 1407
  • [27] Application of a deep learning image reconstruction (DLIR) algorithm in head CT imaging for children to improve image quality and lesion detection
    Sun, Jihang
    Li, Haoyan
    Wang, Bei
    Li, Jianying
    Li, Michelle
    Zhou, Zuofu
    Peng, Yun
    BMC MEDICAL IMAGING, 2021, 21 (01)
  • [28] Deep learning image reconstruction to improve accuracy of iodine quantification and image quality in dual-energy CT of the abdomen: a phantom and clinical study
    Fukutomi, Akiyo
    Sofue, Keitaro
    Ueshima, Eisuke
    Negi, Noriyuki
    Ueno, Yoshiko
    Tsujita, Yushi
    Yabe, Shinji
    Yamaguchi, Takeru
    Shimada, Ryuji
    Kusaka, Akiko
    Hori, Masatoshi
    Murakami, Takamichi
    EUROPEAN RADIOLOGY, 2023, 33 (02) : 1388 - 1399
  • [29] Comparison of two deep learning image reconstruction algorithms in chest CT images: A task-based image quality assessment on phantom data
    Greffier, Joel
    Frandon, Julien
    Si-Mohamed, Salim
    Dabli, Djamel
    Hamard, Aymeric
    Belaouni, Asmaa
    Akessoul, Philippe
    Besse, Francis
    Guiu, Boris
    Beregi, Jean-Paul
    DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2022, 103 (01) : 21 - 30
  • [30] Deep learning image reconstruction algorithm for abdominal multidetector CT at different tube voltages: assessment of image quality and radiation dose in a phantom study
    Park, Hye Joo
    Choi, Seo-Youn
    Lee, Ji Eun
    Lim, Sanghyeok
    Lee, Min Hee
    Yi, Boem Ha
    Cha, Jang Gyu
    Min, Ji Hye
    Lee, Bora
    Jung, Yunsub
    EUROPEAN RADIOLOGY, 2022, 32 (06) : 3974 - 3984