Epidemic spreading on complex networks with community structures

被引:138
作者
Stegehuis, Clara [1 ]
van der Hofstad, Remco [1 ]
van Leeuwaarden, Johan S. H. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Math & Comp Sci, POB 513, NL-5600 MB Eindhoven, Netherlands
关键词
SCALING LIMITS; RANDOM GRAPHS;
D O I
10.1038/srep29748
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many real-world networks display a community structure. We study two random graph models that create a network with similar community structure as a given network. One model preserves the exact community structure of the original network, while the other model only preserves the set of communities and the vertex degrees. These models show that community structure is an important determinant of the behavior of percolation processes on networks, such as information diffusion or virus spreading: the community structure can both enforce as well as inhibit diffusion processes. Our models further show that it is the mesoscopic set of communities that matters. The exact internal structures of communities barely influence the behavior of percolation processes across networks. This insensitivity is likely due to the relative denseness of the communities.
引用
收藏
页数:7
相关论文
共 48 条
[31]   Structure and tie strengths in mobile communication networks [J].
Onnela, J.-P. ;
Saramaki, J. ;
Hyvonen, J. ;
Szabo, G. ;
Lazer, D. ;
Kaski, K. ;
Kertesz, J. ;
Barabasi, A.-L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (18) :7332-7336
[32]   Quantifying randomness in real networks [J].
Orsini, Chiara ;
Dankulov, Marija M. ;
Colomer-de-Simon, Pol ;
Jamakovic, Almerima ;
Mahadevan, Priya ;
Vahdat, Amin ;
Bassler, Kevin E. ;
Toroczkai, Zoltan ;
Boguna, Marian ;
Caldarelli, Guido ;
Fortunato, Santo ;
Krioukov, Dmitri .
NATURE COMMUNICATIONS, 2015, 6
[33]   Epidemic spreading in scale-free networks [J].
Pastor-Satorras, R ;
Vespignani, A .
PHYSICAL REVIEW LETTERS, 2001, 86 (14) :3200-3203
[34]   Epidemic processes in complex networks [J].
Pastor-Satorras, Romualdo ;
Castellano, Claudio ;
Van Mieghem, Piet ;
Vespignani, Alessandro .
REVIEWS OF MODERN PHYSICS, 2015, 87 (03) :925-979
[35]  
Porter M., 2009, NOT AM MATH SOC, V56, P1082
[36]   Maps of random walks on complex networks reveal community structure [J].
Rosvall, Martin ;
Bergstrom, Carl T. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (04) :1118-1123
[37]   Exploring community structure in biological networks with random graphs [J].
Sah, Pratha ;
Singh, Lisa O. ;
Clauset, Aaron ;
Bansal, Shweta .
BMC BIOINFORMATICS, 2014, 15
[38]   Dynamics and Control of Diseases in Networks with Community Structure [J].
Salathe, Marcel ;
Jones, James H. .
PLOS COMPUTATIONAL BIOLOGY, 2010, 6 (04)
[39]   Clustering in complex networks.: II.: Percolation properties [J].
Serrano, M. Angeles ;
Boguna, Marian .
PHYSICAL REVIEW E, 2006, 74 (05)
[40]   Percolation and epidemic thresholds in clustered networks [J].
Serrano, M. Angeles ;
Boguna, Marian .
PHYSICAL REVIEW LETTERS, 2006, 97 (08)