Thermal properties of graphene and few-layer graphene: applications in electronics

被引:86
作者
Yan, Zhong [1 ,2 ]
Nika, Denis L. [1 ,2 ,3 ]
Balandin, Alexander A. [1 ,2 ,4 ]
机构
[1] Univ Calif Riverside, Dept Elect Engn, Bourns Coll Engn, Riverside, CA 92521 USA
[2] Univ Calif Riverside, Mat Sci & Engn Program, Bourns Coll Engn, Nanodevice Lab, Riverside, CA 92521 USA
[3] Moldova State Univ, E Pokatilov Lab Phys & Engn Nanomat, Dept Phys & Engn, MD-2009 Kishinev, Moldova
[4] Quantum Seed LLC, Riverside, CA 92507 USA
关键词
thermal conductivity; graphene; phonons; reliability; few-layer grapheme; advanced electronics; intrinsic thermal conductivity; thermal management applications; FLG heat spreaders; heat generating areas; high-power density transistors; hot-spot temperature; device operation; device reliability; CHEMICAL-VAPOR-DEPOSITION; FIELD-EFFECT TRANSISTORS; TEMPERATURE-DEPENDENCE; PHONON CONFINEMENT; RAMAN-SCATTERING; CONDUCTIVITY; SILICON; TRANSPORT; FILMS; HEAT;
D O I
10.1049/iet-cds.2014.0093
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The authors review thermal properties of graphene and few-layer graphene (FLG), and discuss applications of these materials in thermal management of advanced electronics. The intrinsic thermal conductivity of graphene - among the highest of known materials - is dominated by phonons near the room temperature. The examples of thermal management applications include the FLG heat spreaders integrated near the heat generating areas of the high-power density transistors. It has been demonstrated that FLG heat spreaders can lower the hot-spot temperature during device operation, resulting in improved performance and reliability of the devices.
引用
收藏
页码:4 / 12
页数:9
相关论文
共 77 条
[1]  
[Anonymous], 2001, PHONONS NANOSTRUCTUR, DOI DOI 10.1017/CBO9780511534898.004
[2]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[3]   Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well [J].
Balandin, A ;
Wang, KL .
PHYSICAL REVIEW B, 1998, 58 (03) :1544-1549
[4]   Effect of phonon confinement on the thermoelectric figure of merit of quantum wells [J].
Balandin, A ;
Wang, KL .
JOURNAL OF APPLIED PHYSICS, 1998, 84 (11) :6149-6153
[5]   Thermal Conduction in Suspended Graphene Layers [J].
Balandin, A. A. ;
Ghosh, S. ;
Nika, D. L. ;
Pokatilov, E. P. .
FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2010, 18 (4-6) :474-486
[6]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[7]   Phononics in low-dimensional materials [J].
Balandin, Alexander A. ;
Nika, Denis L. .
MATERIALS TODAY, 2012, 15 (06) :266-275
[8]   The Heat Is On: Graphene Applications [J].
Balandin, Alexander A. .
IEEE NANOTECHNOLOGY MAGAZINE, 2011, 5 (04) :15-19
[9]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[10]   Chill Out [J].
Balandin, Alexander A. .
IEEE SPECTRUM, 2009, 46 (10) :34-39