Crosstalk of toll-like receptors signaling and Nrf2 pathway for regulation of inflammation

被引:146
作者
Mohan, Shikha [1 ]
Gupta, Damodar [1 ]
机构
[1] Inst Nucl Med & Allied Sci, Delhi 54, India
关键词
Chronic inflammation; TLR signaling; Nrf2; pathway; p62; NF-kappa B; TRANSCRIPTION FACTOR NRF2; ANTIOXIDANT RESPONSE ELEMENT; PATTERN-RECOGNITION RECEPTORS; SUBSTRATE ADAPTER PROTEIN; BRUTONS TYROSINE KINASE; INNATE IMMUNE-RESPONSE; HEME OXYGENASE-1; OXIDATIVE STRESS; GENE-EXPRESSION; MEDIATED INDUCTION;
D O I
10.1016/j.biopha.2018.10.019
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Inflammation as a second line of defense of innate immunity plays a crucial role in eliminating invading pathogens (bacteria, viruses, fungi as well as other parasites). The inflammatory response may also activate adaptive immune system involving lymphocytes to mount either antibody dependent or cell-mediated immune responses to clear pathogenic insult. However, if continued, the inflammatory processes may become uncontrolled culminating in cellular injury and tissue destruction, thereby manifesting itself in chronic form. The chronic inflammation has been associated with numerous human pathological conditions like allergies and autoimmune diseases, atherosclerosis, arthritis, Alzheimer's disease, cancer, obesity, type 2 diabetes, schizophrenia, neuro-degenerative diseases and numerous others. The dysregulated inflammatory process is associated with overproduction of free radicals leading to oxidative stress and activation of different cell signaling pathways. The regulation of inflammation by TLR signaling as well as Nrf2 pathways separately is widely documented. Since both these major signaling pathways modulate inflammation, they may crosstalk to bring about coordinated inflammatory responses. The linkage between TLR signaling and Nrf2-Keap1 pathway may serve as a bridge between immune regulation and oxidative stress responses through regulation of inflammation. Also, inflammation is reportedly responsible for the plethora of diseased conditions; a study of its regulation by targeting the TLR-Nrf2 cross-talks may also be beneficial for the development of therapeutic therapies or prophylactic treatments. Hence, present review focuses on the crosstalk between TLR signaling and Nrf2 pathway with respect to their role in modulation of inflammation in normal as well as pathologic conditions.
引用
收藏
页码:1866 / 1878
页数:13
相关论文
共 169 条
[1]   Nrf2 signaling pathway: Pivotal roles in inflammation [J].
Ahmed, Syed Minhaj Uddin ;
Luo, Lin ;
Namani, Akhileshwar ;
Wang, Xiu Jun ;
Tang, Xiuwen .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2017, 1863 (02) :585-597
[2]   Phosphorylation of nrf2 in the transcription activation domain by casein kinase 2 (CK2) is critical for the nuclear translocation and transcription activation function of Nrf2 in IMR-32 neuroblastoma cells [J].
Apopa, Patrick L. ;
He, Xiaoqing ;
Ma, Qiang .
JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, 2008, 22 (01) :63-76
[3]   Polyubiquitin conjugation to NEMO by triparite motif protein 23 (TRIM23) is critical in antiviral defense [J].
Arimoto, Kei-ichiro ;
Funami, Kenji ;
Saeki, Yasushi ;
Tanaka, Keiji ;
Okawa, Katsuya ;
Takeuchi, Osamu ;
Akira, Shizuo ;
Murakami, Yoshiki ;
Shimotohno, Kunitada .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (36) :15856-15861
[4]   The molecular structure of the Toll-like receptor 3 ligand-binding domain [J].
Bell, JK ;
Botos, I ;
Hall, PR ;
Askins, J ;
Shiloach, J ;
Segal, DM ;
Davies, DR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (31) :10976-10980
[5]   Quercetin attenuates atherosclerotic inflammation and adhesion molecule expression by modulating TLR-NF-κB signaling pathway [J].
Bhaskar, Shobha ;
Sudhakaran, P. R. ;
Helen, A. .
CELLULAR IMMUNOLOGY, 2016, 310 :131-140
[6]   Quercetin modulates toll-like receptor-mediated protein kinase signaling pathways in oxLDL-challenged human PBMCs and regulates TLR-activated atherosclerotic inflammation in hypercholesterolemic rats [J].
Bhaskar, Shobha ;
Helen, A. .
MOLECULAR AND CELLULAR BIOCHEMISTRY, 2016, 423 (1-2) :53-65
[7]   MONITORING AUTOPHAGIC DEGRADATION OF P62/SQSTM1 [J].
Bjorkoy, Geir ;
Lamark, Trond ;
Pankiv, Serhiy ;
Overvatn, Aud ;
Brech, Andreas ;
Johansen, Terje .
METHODS IN ENZYMOLOGY: AUTOPHAGY IN MAMMALIAN SYSTEMS, VOL 452, PT B, 2009, 452 :181-197
[8]   Beyond pattern recognition: five immune checkpoints for scaling the microbial threat [J].
Blander, J. Magarian ;
Sander, Leif E. .
NATURE REVIEWS IMMUNOLOGY, 2012, 12 (03) :215-225
[9]   Regulation of phagosome maturation by signals from Toll-like receptors [J].
Blander, JM ;
Medzhitov, R .
SCIENCE, 2004, 304 (5673) :1014-1018
[10]   Dimethyl fumarate in the treatment of relapsing-remitting multiple sclerosis: an overview [J].
Bomprezzi, Roberto .
THERAPEUTIC ADVANCES IN NEUROLOGICAL DISORDERS, 2015, 8 (01) :20-30