A Fuzzy Lyapunov Function Method to Stability Analysis of Fractional-Order T-S Fuzzy Systems

被引:31
作者
Fan, Xiaofei [1 ,2 ]
Wang, Zhanshan [1 ,2 ]
机构
[1] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Peoples R China
[2] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金;
关键词
Fuzzy systems; Lyapunov methods; Stability criteria; Symmetric matrices; Fans; Nonlinear systems; Marine vehicles; Fractional-order T-S fuzzy systems; fuzzy Lyapunov functions; stability analysis; STABILIZATION; DESIGN; CONTROLLER; MODEL;
D O I
10.1109/TFUZZ.2021.3078289
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article investigates the stability analysis and stabilization problems for fractional-order T-S fuzzy systems via fuzzy Lyapunov function method. A membership-function-dependent fuzzy Lyapunov function instead of the general quadratic Lyapunov function is employed to obtain the stability and stabilization criteria. Different from the general quadratic Lyapunov function, the fuzzy Lyapunov functions contain the product of three term functions. Since the general Leibniz formula cannot be satisfied for fractional derivative, the current results on the fractional derivative for the quadratic Lyapunov functions cannot be extended to the fuzzy Lyapunov functions. Therefore, to estimate the fractional derivative of fuzzy Lyapunov functions, the fractional derivative rule for the product of three term functions is proposed. Based on the proposed fractional derivative rule, the corresponding stability and stabilization criteria are established, which extend the existing results. Finally, two simulation examples are presented to illustrate the effectiveness of the proposed theoretical analysis.
引用
收藏
页码:2769 / 2776
页数:8
相关论文
共 29 条
[1]   Lyapunov functions for fractional order systems [J].
Aguila-Camacho, Norelys ;
Duarte-Mermoud, Manuel A. ;
Gallegos, Javier A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) :2951-2957
[2]   Mode-dependent non-fragile observer-based controller design for fractional-order T-S fuzzy systems with Markovian jump via non-PDC scheme [J].
Duan, Ruirui ;
Li, Junmin ;
Chen, Jiaxi .
NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2019, 34 :74-91
[3]   Observer-based non-PDC controller design for T-S fuzzy systems with the fractionalorder α: 0 < α < 1 [J].
Duan, Ruirui ;
Li, Junmin .
IET CONTROL THEORY AND APPLICATIONS, 2018, 12 (05) :661-668
[4]   Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems [J].
Duarte-Mermoud, Manuel A. ;
Aguila-Camacho, Norelys ;
Gallegos, Javier A. ;
Castro-Linares, Rafael .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 22 (1-3) :650-659
[5]   Analysis and synthesis of robust control systems using linear parameter dependent Lyapunov functions [J].
Geromel, Jose C. ;
Korogui, Rubens H. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (12) :1984-1989
[6]   Necessary and sufficient conditions for the dynamic output feedback stabilization of fractional-order systems with order 0 < α < 1 [J].
Guo, Ying ;
Lin, Chong ;
Chen, Bing ;
Wang, Qingguo .
SCIENCE CHINA-INFORMATION SCIENCES, 2019, 62 (09)
[7]   Design of fuzzy state feedback controller for robust stabilization of uncertain fractional-order chaotic systems [J].
Huang, Xia ;
Wang, Zhen ;
Li, Yuxia ;
Lu, Junwei .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2014, 351 (12) :5480-5493
[8]   Global Mittag-Leffler Boundedness of Fractional-Order Fuzzy Quaternion-Valued Neural Networks With Linear Threshold Neurons [J].
Jian, Jigui ;
Wu, Kai ;
Wang, Baoxian .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2021, 29 (10) :3154-3164
[9]  
Kilbas A. A., 2006, THEORY APPL FRACTION, V240, DOI DOI 10.1016/S0304-0208(06)80001-0
[10]   Periodic Lyapunov functions for periodic TS systems [J].
Lendek, Zs. ;
Lauber, J. ;
Guerra, T. M. .
SYSTEMS & CONTROL LETTERS, 2013, 62 (04) :303-310