Multiresolution analysis for linear canonical S transform

被引:14
作者
Bhat, M. Younus [1 ]
Dar, Aamir H. [1 ]
机构
[1] Islamic Univ Sci & Technol Awantipora, Dept Math Sci, Pulwama 192122, Jammu & Kashmir, India
关键词
Linear canonical S transform; Scaling function; Multiresolution analysis; Orthogonality;
D O I
10.1007/s43036-021-00164-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
To deal with the time-varying signals, linear canonical S transform (LCST) is introduced to possess some desirable characteristics that are absent in conventional time-frequency transforms. Inspired by LCST, we in this paper developed an idea of novel MRA associated with LCST. Moreover, the construction method of orthogonal wavelets is developed. Finally an example is provided to justify the results.
引用
收藏
页数:11
相关论文
共 12 条
[1]   S-transform applied to laser Doppler flowmetry reactive hyperemia signals [J].
Assous, Said ;
Humeau, Anne ;
Tartas, Maylis ;
Abraham, Pierre ;
L'Huillier, Jean-Pierre .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2006, 53 (06) :1032-1037
[2]  
Bahri Mawardi, 2019, Journal of Physics: Conference Series, V1341, DOI 10.1088/1742-6596/1341/6/062005
[3]   Power quality analysis using S-Transform [J].
Dash, PK ;
Panigrahi, BK ;
Panda, G .
IEEE TRANSACTIONS ON POWER DELIVERY, 2003, 18 (02) :406-411
[4]  
Daubechies I., 1992, 10 LECT WAVELETS, DOI [DOI 10.1137/1.9781611970104, 10.1137/1.9781611970104]
[5]  
Guo Y., 2019, IAENG INT J COMPUT S, V46, P2
[6]   Heart sound analysis using the S transform [J].
Livanos, G ;
Ranganathan, N ;
Jiang, J .
COMPUTERS IN CARDIOLOGY 2000, VOL 27, 2000, 27 :587-590
[8]  
Stockwell RG, 1996, IEEE T SIGNAL PROCES, V44, P998, DOI 10.1109/78.492555
[9]  
Wang Y., 2009, P SPIE INT SOC OPT E
[10]  
Younus M., 2020, ARXIV201108339V1MATH