An efficient intrusion detection system based on hypergraph - Genetic algorithm for parameter optimization and feature selection in support vector machine

被引:172
作者
Raman, M. R. Gauthama [1 ]
Somu, Nivethitha [1 ]
Kirthivasan, Kannan [2 ]
Liscano, Ramiro [3 ]
Sriram, V. S. Shankar [1 ]
机构
[1] SASTRA Univ, Sch Comp, CISH, Thanjavur, Tamil Nadu, India
[2] SASTRA Univ, Dept Math, DMRL, Thanjavur, Tamil Nadu, India
[3] Univ Ontario, Inst Technol, Dept Elect Comp & Software Engn, Oshawa, ON, Canada
关键词
Hypergraph; Genetic algorithm; Support vector machine; Feature subset; Kernel parameters; Intrusion detection system; PARTICLE SWARM OPTIMIZATION; TSALLIS ENTROPY; SVM; IMAGES;
D O I
10.1016/j.knosys.2017.07.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Realization of the importance for advanced tool and techniques to secure the network infrastructure from the security risks has led to the development of many machine learning based intrusion detection techniques. However, the benefits and limitations of these techniques make the development of an efficient Intrusion Detection System (IDS), an open challenge. This paper presents an adaptive, and a robust intrusion detection technique using Hypergraph based Genetic Algorithm (HG - GA) for parameter setting and feature selection in Support Vector Machine (SVM). Hyper - clique property of Hypergraph was exploited for the generation of initial population to fasten the search for the optimal solution and to prevent the trap at the local minima. HG-GA uses a weighted objective function to maintain the trade-off between maximizing the detection rate and minimizing the false alarm rate, along with the optimal number of features. The performance of HG-GA SVM was evaluated using NSL-KDD intrusion dataset under two scenarios (i) All features and (ii) informative features obtained from HG - GA. Experimental results show the prominence of HG-GA SVM over the existing techniques in terms of classifier accuracy, detection rate, false alarm rate, and runtime analysis. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 52 条
[1]  
Abadeh MS, 2010, ISECURE-ISC INT J IN, V2, P33
[2]  
[Anonymous], GUARDIAN
[3]  
[Anonymous], IEEE S COMP INT SEC
[4]  
[Anonymous], 2017, KNOWL BASED SYST, DOI DOI 10.1016/J.KN0SYS.2017.01.013
[5]  
[Anonymous], NIST SPEC PUBL
[6]  
[Anonymous], 2016, DATA MINING PRACTICA, DOI DOI 10.1016/C2009-0-19715-5
[7]  
[Anonymous], ENG APPL
[8]  
[Anonymous], IEEE T GEOSCI
[9]  
[Anonymous], HERITAGE FDN
[10]  
[Anonymous], IMAGE VIS COMPUT