Flag numbers and floating bodies

被引:4
作者
Besau, Florian [1 ]
Schuett, Carsten [2 ]
Werner, Elisabeth M. [3 ,4 ]
机构
[1] Goethe Univ Frankfurt, Inst Math, Robert Mayer Str 10, D-60054 Frankfurt, Germany
[2] Univ Kiel, Math Seminar, Kiel, Germany
[3] Case Western Reserve Univ, Dept Math, Cleveland, OH 44106 USA
[4] Univ Lille 1, UFR Math, F-59655 Villeneuve Dascq, France
关键词
Convex floating body of polytope; Weighted floating body of polytope; Total number of flags; Flag simplex; Spherical polytope; Hyperbolic polytope; MINIMAL VOLUME PRODUCT; AFFINE SURFACE; CONVEX-BODIES; BLASCHKE-SANTALO; F-VECTORS; FACES; DIVERGENCE; STABILITY; POLYTOPES;
D O I
10.1016/j.aim.2018.09.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate weighted floating bodies of polytopes. We show that the weighted volume depends on the complete flags of the polytope. This connection is obtained by introducing flag simplices, which translate between the metric and combinatorial structure. Our results are applied in spherical and hyperbolic space. This leads to new asymptotic results for polytopes in these spaces. We also provide explicit examples of spherical and hyperbolic convex bodies whose floating bodies behave completely different from any convex body in Euclidean space. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:912 / 952
页数:41
相关论文
共 77 条
  • [1] [Anonymous], 2007, GRUNDLEHREN MATH WIS
  • [2] [Anonymous], 1971, London Math. Soc. Lecture Notes Series
  • [3] Functional affine-isoperimetry and an inverse logarithmic Sobolev inequality
    Artstein-Avidan, S.
    Klartag, B.
    Schuett, C.
    Werner, E.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (09) : 4181 - 4204
  • [4] RANDOM POLYTOPES IN A CONVEX POLYTOPE, INDEPENDENCE OF SHAPE, AND CONCENTRATION OF VERTICES
    BARANY, I
    BUCHTA, C
    [J]. MATHEMATISCHE ANNALEN, 1993, 297 (03) : 467 - 497
  • [5] CONVEX-BODIES, ECONOMIC CAP COVERINGS, RANDOM POLYTOPES
    BARANY, I
    LARMAN, DG
    [J]. MATHEMATIKA, 1988, 35 (70) : 274 - 291
  • [6] BORSUK THEOREM AND THE NUMBER OF FACETS OF CENTRALLY SYMMETRIC POLYTOPES
    BARANY, I
    LOVASZ, L
    [J]. ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1982, 40 (3-4): : 323 - 329
  • [7] Random Points in Halfspheres
    Barany, Imre
    Hug, Daniel
    Reitzner, Matthias
    Schneider, Rolf
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2017, 50 (01) : 3 - 22
  • [8] Stability of the functional forms of the Blaschke-Santal inequality
    Barthe, Franck
    Boeroeczky, Karoly J.
    Fradelizi, Matthieu
    [J]. MONATSHEFTE FUR MATHEMATIK, 2014, 173 (02): : 135 - 159
  • [9] A centrally symmetric version of the cyclic polytope
    Barvinok, Alexander
    Novik, Isabella
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2008, 39 (1-3) : 76 - 99
  • [10] CENTRALLY SYMMETRIC POLYTOPES WITH MANY FACES
    Barvinok, Alexander
    Lee, Seung Jin
    Novik, Isabella
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2013, 195 (01) : 457 - 472