An Efficient Method for Link Prediction in Complex Multiplex Networks

被引:18
作者
Sharma, Shikhar [1 ]
Singh, Anurag [2 ]
机构
[1] Univ Delhi, Cluster Innovat Ctr, Delhi 110007, India
[2] Natl Inst Technol Delhi, Dept Comp Sci & Engn, Delhi 110040, India
来源
2015 11TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS (SITIS) | 2015年
关键词
Link Prediction; Multiplex; Complex Networks;
D O I
10.1109/SITIS.2015.93
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A great variety of artificial and natural systems can be abstracted into a set of entities interacting with each other. Such abstractions can very well represent the underlying dynamics of the system when modeled as network of vertices coupled by edges. Prediction of dynamics in these structures based on topological attribute or dependency relations is an important task. Link Prediction in such complex networks is regarded useful in almost all type of networks as it can be used to extract missing information, identify spurious interactions and evaluate network evolving mechanisms. Various similarity and likelihood based indices have been employed to infer different topological and relation based information to form a link prediction algorithm. These algorithms however are too specific in domain and/or do not encapsulate the generic nature of the real world information. In most natural and engineered systems, the entities are linked with multiple type of associations and relations which play a factor in the dynamics of the network. This forms a multiple subsystem or a multiple layer of networked information. These networks are regarded as Multiplex Networks. This work presents an approach for link prediction on Multiplex Networks where the associations are learned from the multiple layer of networks for link prediction purposes.
引用
收藏
页码:453 / 459
页数:7
相关论文
共 50 条
  • [1] Effective link prediction in multiplex networks: A TOPSIS method
    Bai, Shenshen
    Zhang, Yakun
    Li, Longjie
    Shan, Na
    Chen, Xiaoyun
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 177
  • [2] Supervised link prediction in multiplex networks
    Shan, Na
    Li, Longjie
    Zhang, Yakun
    Bai, Shenshen
    Chen, Xiaoyun
    KNOWLEDGE-BASED SYSTEMS, 2020, 203
  • [3] Link prediction in multiplex networks: An evidence theory method
    Luo, Hongsheng
    Li, Longjie
    Dong, Hu
    Chen, Xiaoyun
    KNOWLEDGE-BASED SYSTEMS, 2022, 257
  • [4] LINK PREDICTION IN MULTIPLEX NETWORKS
    Pujari, Manisha
    Kanawati, Rushed
    NETWORKS AND HETEROGENEOUS MEDIA, 2015, 10 (01) : 17 - 35
  • [5] Link prediction in multiplex online social networks
    Jalili, Mahdi
    Orouskhani, Yasin
    Asgari, Milad
    Alipourfard, Nazanin
    Perc, Matjaz
    ROYAL SOCIETY OPEN SCIENCE, 2017, 4 (02):
  • [6] A Novel Link Prediction Method for Multiplex Networks with Incomplete Information
    Luo, Jie
    Yu, Jianyong
    Liu, Zekun
    Liu, Yuqi
    2023 IEEE 17TH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING, ICSC, 2023, : 282 - 287
  • [7] Link prediction on complex networks
    Lü L.-Y.
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2010, 39 (05): : 651 - 661
  • [8] Link prediction via layer relevance of multiplex networks
    Yao, Yabing
    Zhang, Ruisheng
    Yang, Fan
    Yuan, Yongna
    Sun, Qingshuang
    Qiu, Yu
    Hu, Rongjing
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2017, 28 (08):
  • [9] Link prediction in real-world multiplex networks via layer reconstruction method
    Abdolhosseini-Qomi, Amir Mahdi
    Jafari, Seyed Hossein
    Taghizadeh, Amirheckmat
    Yazdani, Naser
    Asadpour, Masoud
    Rahgozar, Maseud
    ROYAL SOCIETY OPEN SCIENCE, 2020, 7 (07):
  • [10] Link prediction in complex networks: A survey
    Lue, Linyuan
    Zhou, Tao
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (06) : 1150 - 1170