Exact traveling wave solutions for a modified Camassa-Holm equation

被引:1
作者
Cai, Jionghui [1 ]
Qiu, Wen [2 ]
Jia, Pizhu [3 ]
机构
[1] Yuxi Normal Univ, Dept Math, Fac Sci, Yuxi 653100, Yunnan, Peoples R China
[2] Yuxi Normal Univ, Dept Comp Sci, Yuxi 653100, Yunnan, Peoples R China
[3] Normal Univ, Dept Math, Hohhot 010022, Neimenggu, Peoples R China
关键词
A modified Camassa-Holm equation; Bifurcation; Homoclinic orbit; Solitary wave; Periodic wave; PEAKONS;
D O I
10.1016/j.amc.2010.05.096
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the bifurcation method of planar dynamical systems is utilized to investigate a modified Camassa-Holm equation. After dividing the parametric space, some explicit parametric conditions are derived for the existence of traveling wave solutions. Several exact traveling solutions are also obtained. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:607 / 611
页数:5
相关论文
共 5 条
[1]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[2]   Peakons of the Camassa-Holm equation [J].
Liu, ZR ;
Qian, TF .
APPLIED MATHEMATICAL MODELLING, 2002, 26 (03) :473-480
[3]   Peakons and periodic cusp waves in a generalized Camassa-Holm equation [J].
Qian, TF ;
Tang, MY .
CHAOS SOLITONS & FRACTALS, 2001, 12 (07) :1347-1360
[4]  
Xie S, 2005, MATH SCI RES, V9, P268
[5]  
XIE S, 2005, ROSTOCK MATH K, V61, P20