Advances and opportunities in image analysis of bacterial cells and communities

被引:54
作者
Jeckel, Hannah [1 ,2 ]
Drescher, Knut [1 ,2 ,3 ]
机构
[1] Max Planck Inst Terr Microbiol, Karl Von Frisch Str 16, D-35043 Marburg, Germany
[2] Philipps Univ Marburg, Dept Phys, Karl Von Frisch Str 16, D-35043 Marburg, Germany
[3] Synmikro Ctr Synthet Microbiol, Karl Von Frisch Str 16, D-35043 Marburg, Germany
基金
欧洲研究理事会;
关键词
biofilm; microbial community; single cell; segmentation; phenotyping; machine learning; data science; FLUORESCENCE MICROSCOPY; HIGH-THROUGHPUT; BIOFILM; SEGMENTATION; PROGRAM; QUANTIFICATION; EXPRESSION; DYNAMICS; PLATFORM; REVEAL;
D O I
10.1093/femsre/fuaa062
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The cellular morphology and sub-cellular spatial structure critically influence the function of microbial cells. Similarly, the spatial arrangement of genotypes and phenotypes in microbial communities has important consequences for cooperation, competition, and community functions. Fluorescence microscopy techniques are widely used to measure spatial structure inside living cells and communities, which often results in large numbers of images that are difficult or impossible to analyze manually. The rapidly evolving progress in computational image analysis has recently enabled the quantification of a large number of properties of single cells and communities, based on traditional analysis techniques and convolutional neural networks. Here, we provide a brief introduction to core concepts of automated image processing, recent software tools and how to validate image analysis results. We also discuss recent advances in image analysis of microbial cells and communities, and how these advances open up opportunities for quantitative studies of spatiotemporal processes in microbiology, based on image cytometry and adaptive microscope control.
引用
收藏
页数:14
相关论文
共 115 条
  • [1] Aghaeepour N, 2013, NAT METHODS, V10, P228, DOI [10.1038/NMETH.2365, 10.1038/nmeth.2365]
  • [2] [Anonymous], 1965, OPTICAL ELECTROOPTIC
  • [3] Image analysis driven single-cell analytics for systems microbiology
    Balomenos, Athanasios D.
    Tsakanikas, Panagiotis
    Aspridou, Zafiro
    Tampakaki, Anastasia P.
    Koutsoumanis, Konstantinos P.
    Manolakos, Elias S.
    [J]. BMC SYSTEMS BIOLOGY, 2017, 11
  • [4] Bannon D, 2018, DEEPCELL 2 0 AUTOMAT, V12
  • [5] Dimensionality reduction for visualizing single-cell data using UMAP
    Becht, Etienne
    McInnes, Leland
    Healy, John
    Dutertre, Charles-Antoine
    Kwok, Immanuel W. H.
    Ng, Lai Guan
    Ginhoux, Florent
    Newell, Evan W.
    [J]. NATURE BIOTECHNOLOGY, 2019, 37 (01) : 38 - +
  • [6] HOW TO TRACK BACTERIA
    BERG, HC
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1971, 42 (06) : 868 - &
  • [7] ilastik: interactive machine learning for (bio) image analysis
    Berg, Stuart
    Kutra, Dominik
    Kroeger, Thorben
    Straehle, Christoph N.
    Kausler, Bernhard X.
    Haubold, Carsten
    Schiegg, Martin
    Ales, Janez
    Beier, Thorsten
    Rudy, Markus
    Eren, Kemal
    Cervantes, Jaime I.
    Xu, Buote
    Beuttenmueller, Fynn
    Wolny, Adrian
    Zhang, Chong
    Koethe, Ullrich
    Hamprecht, Fred A.
    Kreshuk, Anna
    [J]. NATURE METHODS, 2019, 16 (12) : 1226 - 1232
  • [8] Verticalization of bacterial biofilms
    Beroz, Farzan
    Yan, Jing
    Meir, Yigal
    Sabass, Benedikt
    Stone, Howard A.
    Bassler, Bonnie L.
    Wingreen, Ned S.
    [J]. NATURE PHYSICS, 2018, 14 (09) : 954 - +
  • [9] Beucher S., 2018, Mathematical morphology in image processing, P433
  • [10] Three-dimensional biofilm structure quantification
    Beyenal, H
    Donovan, C
    Lewandowski, Z
    Harkin, G
    [J]. JOURNAL OF MICROBIOLOGICAL METHODS, 2004, 59 (03) : 395 - 413