Advances and opportunities in image analysis of bacterial cells and communities

被引:60
作者
Jeckel, Hannah [1 ,2 ]
Drescher, Knut [1 ,2 ,3 ]
机构
[1] Max Planck Inst Terr Microbiol, Karl Von Frisch Str 16, D-35043 Marburg, Germany
[2] Philipps Univ Marburg, Dept Phys, Karl Von Frisch Str 16, D-35043 Marburg, Germany
[3] Synmikro Ctr Synthet Microbiol, Karl Von Frisch Str 16, D-35043 Marburg, Germany
基金
欧洲研究理事会;
关键词
biofilm; microbial community; single cell; segmentation; phenotyping; machine learning; data science; FLUORESCENCE MICROSCOPY; HIGH-THROUGHPUT; BIOFILM; SEGMENTATION; PROGRAM; QUANTIFICATION; EXPRESSION; DYNAMICS; PLATFORM; REVEAL;
D O I
10.1093/femsre/fuaa062
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The cellular morphology and sub-cellular spatial structure critically influence the function of microbial cells. Similarly, the spatial arrangement of genotypes and phenotypes in microbial communities has important consequences for cooperation, competition, and community functions. Fluorescence microscopy techniques are widely used to measure spatial structure inside living cells and communities, which often results in large numbers of images that are difficult or impossible to analyze manually. The rapidly evolving progress in computational image analysis has recently enabled the quantification of a large number of properties of single cells and communities, based on traditional analysis techniques and convolutional neural networks. Here, we provide a brief introduction to core concepts of automated image processing, recent software tools and how to validate image analysis results. We also discuss recent advances in image analysis of microbial cells and communities, and how these advances open up opportunities for quantitative studies of spatiotemporal processes in microbiology, based on image cytometry and adaptive microscope control.
引用
收藏
页数:14
相关论文
共 115 条
[1]  
Aghaeepour N, 2013, NAT METHODS, V10, P228, DOI [10.1038/NMETH.2365, 10.1038/nmeth.2365]
[2]  
[Anonymous], 1965, OPTICAL ELECTROOPTIC
[3]   Image analysis driven single-cell analytics for systems microbiology [J].
Balomenos, Athanasios D. ;
Tsakanikas, Panagiotis ;
Aspridou, Zafiro ;
Tampakaki, Anastasia P. ;
Koutsoumanis, Konstantinos P. ;
Manolakos, Elias S. .
BMC SYSTEMS BIOLOGY, 2017, 11
[4]  
Bannon D, 2018, DEEPCELL 2 0 AUTOMAT, V12
[5]   Dimensionality reduction for visualizing single-cell data using UMAP [J].
Becht, Etienne ;
McInnes, Leland ;
Healy, John ;
Dutertre, Charles-Antoine ;
Kwok, Immanuel W. H. ;
Ng, Lai Guan ;
Ginhoux, Florent ;
Newell, Evan W. .
NATURE BIOTECHNOLOGY, 2019, 37 (01) :38-+
[6]   HOW TO TRACK BACTERIA [J].
BERG, HC .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1971, 42 (06) :868-&
[7]   ilastik: interactive machine learning for (bio) image analysis [J].
Berg, Stuart ;
Kutra, Dominik ;
Kroeger, Thorben ;
Straehle, Christoph N. ;
Kausler, Bernhard X. ;
Haubold, Carsten ;
Schiegg, Martin ;
Ales, Janez ;
Beier, Thorsten ;
Rudy, Markus ;
Eren, Kemal ;
Cervantes, Jaime I. ;
Xu, Buote ;
Beuttenmueller, Fynn ;
Wolny, Adrian ;
Zhang, Chong ;
Koethe, Ullrich ;
Hamprecht, Fred A. ;
Kreshuk, Anna .
NATURE METHODS, 2019, 16 (12) :1226-1232
[8]   Verticalization of bacterial biofilms [J].
Beroz, Farzan ;
Yan, Jing ;
Meir, Yigal ;
Sabass, Benedikt ;
Stone, Howard A. ;
Bassler, Bonnie L. ;
Wingreen, Ned S. .
NATURE PHYSICS, 2018, 14 (09) :954-+
[9]  
Beucher S., 2018, Mathematical morphology in image processing, P433
[10]   Three-dimensional biofilm structure quantification [J].
Beyenal, H ;
Donovan, C ;
Lewandowski, Z ;
Harkin, G .
JOURNAL OF MICROBIOLOGICAL METHODS, 2004, 59 (03) :395-413