Effective Mass Schrodinger Equation via Point Canonical Transformation

被引:0
作者
Arda, Altug [1 ]
Sever, Ramazan [2 ]
机构
[1] Hacettepe Univ, Dept Phys Educ, TR-06800 Ankara, Turkey
[2] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey
关键词
POSITION-DEPENDENT MASS; EXACTLY SOLVABLE POTENTIALS; SYSTEMS;
D O I
10.1088/0256-307X/27/7/070307
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Exact solutions of the effective radial Schrodinger equation are obtained for some inverse potentials by using the point canonical transformation. The energy eigenvalues and the corresponding wave functions are calculated by using a set of mass distributions.
引用
收藏
页数:4
相关论文
共 50 条
[42]   Exact solutions of the position-dependent mass Schrodinger equation in D dimensions [J].
Chen, G ;
Chen, ZD .
PHYSICS LETTERS A, 2004, 331 (05) :312-315
[43]   Series solutions of the Schrodinger equation with position-dependent mass for the Morse potential [J].
Yu, J ;
Dong, SH ;
Sun, GH .
PHYSICS LETTERS A, 2004, 322 (5-6) :290-297
[44]   Solving the regulator problem for a 1-D Schrodinger equation via backstepping [J].
Zhou, Hua-Cheng ;
Weiss, George .
IFAC PAPERSONLINE, 2017, 50 (01) :4516-4521
[45]   The regulation problem for the one-dimensional Schrodinger equation via the backstepping approach [J].
Zhou, Hua-Cheng ;
Weiss, George .
2016 IEEE INTERNATIONAL CONFERENCE ON THE SCIENCE OF ELECTRICAL ENGINEERING (ICSEE), 2016,
[46]   The harmonic oscillator and the position dependent mass Schrodinger equation: isospectral partners and factorization operators [J].
Morales, J. ;
Ovando, G. ;
Pena, J. J. .
SYMMETRIES IN NATURE, 2010, 1323 :233-243
[47]   Nonperturbative solutions for one-dimensional Schrodinger equation with position-dependent mass [J].
Solimannejad, M ;
Moayedi, SK ;
Tavakoli, M .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2006, 106 (05) :1027-1031
[48]   Variational Principle for a Schrodinger Equation with Non-Hermitian Hamiltonian and Position Dependent Mass [J].
Plastino, A. R. ;
Vignat, C. ;
Plastino, A. .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2015, 63 (03) :275-278
[49]   Approximate Solutions to the Dirac Equation with Effective Mass for the Manning-Rosen Potential in N Dimensions [J].
Bahar, M. K. ;
Yasuk, F. .
FEW-BODY SYSTEMS, 2012, 53 (3-4) :515-524
[50]   New Oscillation Theorems for Second-Order Differential Equations with Canonical and Non-Canonical Operator via Riccati Transformation [J].
Santra, Shyam Sundar ;
Sethi, Abhay Kumar ;
Moaaz, Osama ;
Khedher, Khaled Mohamed ;
Yao, Shao-Wen .
MATHEMATICS, 2021, 9 (10)