Effective Mass Schrodinger Equation via Point Canonical Transformation

被引:0
作者
Arda, Altug [1 ]
Sever, Ramazan [2 ]
机构
[1] Hacettepe Univ, Dept Phys Educ, TR-06800 Ankara, Turkey
[2] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey
关键词
POSITION-DEPENDENT MASS; EXACTLY SOLVABLE POTENTIALS; SYSTEMS;
D O I
10.1088/0256-307X/27/7/070307
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Exact solutions of the effective radial Schrodinger equation are obtained for some inverse potentials by using the point canonical transformation. The energy eigenvalues and the corresponding wave functions are calculated by using a set of mass distributions.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Introducing supersymmetric quantum mechanics via point canonical transformations
    Gonzalez, Gabriel
    [J]. EUROPEAN JOURNAL OF PHYSICS, 2020, 41 (04)
  • [32] The time independent fractional Schrodinger equation with position-dependent mass
    Jamshir, Narges
    Lari, Behzad
    Hassanabadi, Hassan
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2021, 565
  • [33] Exact analytic solution of position-dependent mass Schrodinger equation
    Rajbongshi, H.
    [J]. INDIAN JOURNAL OF PHYSICS, 2018, 92 (03) : 357 - 367
  • [34] A new approach to the schrodinger equation with position-dependent mass and its implications in quantum dots and semiconductors
    El-Nabulsi, Rami Ahmad
    [J]. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2020, 140
  • [35] Two-dimensional Schrodinger Hamiltonians with effective mass in SUSY approach
    Cannata, F.
    Ioffe, M. V.
    Nishnianidze, D. N.
    [J]. ANNALS OF PHYSICS, 2008, 323 (10) : 2624 - 2632
  • [36] Controller design for a Schrodinger Equation with an input delay via backstepping method
    Liu, Dongyi
    Han, Rumeng
    Xu, Genqi
    [J]. PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 1654 - 1659
  • [37] Darboux transformation and new periodic wave solutions of generalized derivative nonlinear Schrodinger equation
    Tian, Shou-fu
    Zhang, Tian-tian
    Zhang, Hong-qing
    [J]. PHYSICA SCRIPTA, 2009, 80 (06)
  • [38] Exponential integrator preserving mass boundedness and energy conservation for nonlinear Schrodinger equation
    Xu, Zhuangzhi
    Cai, Wenjun
    Hu, Dongdong
    Wang, Yushun
    [J]. APPLIED NUMERICAL MATHEMATICS, 2022, 173 : 308 - 328
  • [39] Algebraic approach to the position-dependent mass Schrodinger equation for a singular oscillator
    Dong, Shi-Hai
    Pena, J. J.
    Pacheco-Garcia, C.
    Garcia-Ravelo, J.
    [J]. MODERN PHYSICS LETTERS A, 2007, 22 (14) : 1039 - 1045
  • [40] Solutions to the nonlinear Schrodinger equation with sequences of initial data converging to a Dirac mass
    Newport, J. P.
    McLaughlin, K. D. T-R
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (23-24) : 2050 - 2056