Electron scattering in gapped graphene quantum dots

被引:7
作者
Belouad, Abdelhadi [1 ]
Zahidi, Youness [2 ]
Jellal, Ahmed [1 ,3 ]
Bahlouli, Hocine [3 ,4 ]
机构
[1] Chouaib Doukkali Univ, Fac Sci, Theoret Phys Grp, POB 20, El Jadida 24000, Morocco
[2] Hassan 1 Univ, FPK, MATIC Lab, Khouribga, Morocco
[3] Saudi Ctr Theoret Phys, Dhahran, Saudi Arabia
[4] King Fahd Univ Petr & Minerals, Phys Dept, Dhahran 31261, Saudi Arabia
关键词
EPITAXIAL GRAPHENE;
D O I
10.1209/0295-5075/123/28002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Due to Klein tunneling in graphene only quasi-bound states are realized in graphene quantum dots by electrostatic gating. Particles in the quasi-bound states are trapped inside the dot for a finite time and they keep bouncing back and forth till they find their way out. Here we study the effect of an induced gap on the scattering problem of Dirac electrons on a circular electrostatically confined quantum dot. Introducing an energy gap inside the quantum dot enables us to distinguish three scattering regimes instead of two in the case of gapless graphene quantum dot. We will focus on these regimes and analyze the scattering efficiency as a function of the electron energy, the dot radius and the energy gap. Moreover, we will discuss how the system parameters can affect the scattering resonances inside the dot. Copyright (C) EPLA, 2018
引用
收藏
页数:7
相关论文
共 31 条
[1]   Properties of graphene: a theoretical perspective [J].
Abergel, D. S. L. ;
Apalkov, V. ;
Berashevich, J. ;
Ziegler, K. ;
Chakraborty, Tapash .
ADVANCES IN PHYSICS, 2010, 59 (04) :261-482
[2]   AA-stacked bilayer graphene quantum dots in magnetic field [J].
Belouad, Abdelhadi ;
Zahidi, Youness ;
Jellal, Ahmed .
MATERIALS RESEARCH EXPRESS, 2016, 3 (05)
[3]   Gate-tunable graphene quantum dot and Dirac oscillator [J].
Belouad, Abdelhadi ;
Jellal, Ahmed ;
Zahidi, Youness .
PHYSICS LETTERS A, 2016, 380 (5-6) :773-778
[4]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[5]   Production and processing of graphene and 2d crystals [J].
Bonaccorso, Francesco ;
Lombardo, Antonio ;
Hasan, Tawfique ;
Sun, Zhipei ;
Colombo, Luigi ;
Ferrari, Andrea C. .
MATERIALS TODAY, 2012, 15 (12) :564-589
[6]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[7]  
Chakraborty T., 1999, QUANTUM DOTS
[8]   SELF-CONSISTENT EFFECTIVE-MASS THEORY FOR INTRALAYER SCREENING IN GRAPHITE-INTERCALATION COMPOUNDS [J].
DIVINCENZO, DP ;
MELE, EJ .
PHYSICAL REVIEW B, 1984, 29 (04) :1685-1694
[9]   The formation of an energy gap in graphene on ruthenium by controlling the interface [J].
Enderlein, C. ;
Kim, Y. S. ;
Bostwick, A. ;
Rotenberg, E. ;
Horn, K. .
NEW JOURNAL OF PHYSICS, 2010, 12
[10]   Electrostatically Confined Monolayer Graphene Quantum Dots with Orbital and Valley Splittings [J].
Freitag, Nils M. ;
Chizhova, Larisa A. ;
Nemes-Incze, Peter ;
Woods, Colin R. ;
Gorbachev, Roman V. ;
Cao, Yang ;
Geim, Andre K. ;
Novoselov, Kostya S. ;
Burgdoerfer, Joachim ;
Libisch, Florian ;
Morgenstern, Markus .
NANO LETTERS, 2016, 16 (09) :5798-5805