Inferring ancestry from population genomic data and its applications

被引:36
|
作者
Padhukasahasram, Badri [1 ]
机构
[1] Henry Ford Hlth Syst, Ctr Hlth Policy & Hlth Serv Res, Detroit, MI 48202 USA
来源
FRONTIERS IN GENETICS | 2014年 / 5卷
关键词
MULTILOCUS GENOTYPE DATA; LOCAL-ANCESTRY; ADMIXED POPULATIONS; AFRICAN-AMERICANS; GENETIC-STRUCTURE; WIDE ASSOCIATION; INFERENCE; ADMIXTURE; INDIVIDUALS; STRATIFICATION;
D O I
10.3389/fgene.2014.00204
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Ancestry inference is a frequently encountered problem and has many applications such as forensic analyses, genetic association studies, and personal genomics. The main goal of ancestry inference is to identify an individual's population of origin based on our knowledge of natural populations. Because both self-reported ancestry in humans or the sampling location of an organism can be inaccurate for this purpose, the use of genetic markers can facilitate accurate and reliable inference of an individual's ancestral origins. At a higher level, there are two different paradigms in ancestry inference: global ancestry inference which tries to compute the genome-wide average of the population contributions and local ancestry inference which tries to identify the regional ancestry of a genomic segment. In this mini review, I describe the numerous approaches that are currently available for both kinds of ancestry inference from population genomic datasets. I first describe the general ideas underlying such inference methods and their relationship to one another. Then, I describe practical applications in which inference of ancestry has proven useful. Lastly, I discuss challenges and directions for future research work in this area.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Sequence and analysis of a whole genome from Kuwaiti population subgroup of Persian ancestry
    Thareja, Gaurav
    John, Sumi Elsa
    Hebbar, Prashantha
    Behbehani, Kazem
    Thanaraj, Thangavel Alphonse
    Alsmadi, Osama
    BMC GENOMICS, 2015, 16
  • [32] CEGA: a method for inferring natural selection by comparative population genomic analysis across species
    Zhao, Shilei
    Chi, Lianjiang
    Chen, Hua
    GENOME BIOLOGY, 2023, 24 (01)
  • [33] Population Structure, Demographic History, and Adaptation of Giant Honeybees in China Revealed by Population Genomic Data
    Cao, Lianfei
    Dai, Zhijun
    Tan, Hongwei
    Zheng, Huoqing
    Wang, Yun
    Chen, Jie
    Kuang, Haiou
    Chong, Rebecca A.
    Han, Minjin
    Hu, Fuliang
    Sun, Wei
    Sun, Cheng
    Zhang, Ze
    GENOME BIOLOGY AND EVOLUTION, 2023, 15 (03):
  • [34] Population Genomic Analysis of Ancient and Modern Genomes Yields New Insights into the Genetic Ancestry of the Tyrolean Iceman and the Genetic Structure of Europe
    Sikora, Martin
    Carpenter, Meredith L.
    Moreno-Estrada, Andres
    Henn, Brenna M.
    Underhill, Peter A.
    Sanchez-Quinto, Federico
    Zara, Ilenia
    Pitzalis, Maristella
    Sidore, Carlo
    Busonero, Fabio
    Maschio, Andrea
    Angius, Andrea
    Jones, Chris
    Mendoza-Revilla, Javier
    Nekhrizov, Georgi
    Dimitrova, Diana
    Theodossiev, Nikola
    Harkins, Timothy T.
    Keller, Andreas
    Maixner, Frank
    Zink, Albert
    Abecasis, Goncalo
    Sanna, Serena
    Cucca, Francesco
    Bustamante, Carlos D.
    PLOS GENETICS, 2014, 10 (05):
  • [35] Pharmacogenomic genotypes define genetic ancestry in patients and enable population-specific genomic implementation
    Hernandez, Wenndy
    Danahey, Keith
    Pei, Xun
    Yeo, Kiang-Teck J.
    Leung, Edward
    Volchenboum, Samuel L.
    Ratain, Mark J.
    Meltzer, David O.
    Stranger, Barbara E.
    Perera, Minoli A.
    O'Donnell, Peter H.
    PHARMACOGENOMICS JOURNAL, 2020, 20 (01) : 126 - 135
  • [36] The Effect of Genomic Inversions on Estimation of Population Genetic Parameters from SNP Data
    al Basatena, Nafisa-Katrin Seich
    Hoggart, Clive J.
    Coin, Lachlan J.
    O'Reilly, Paul F.
    GENETICS, 2013, 193 (01) : 243 - 253
  • [37] Inferring social structure from temporal data
    Psorakis, Ioannis
    Voelkl, Bernhard
    Garroway, Colin J.
    Radersma, Reinder
    Aplin, Lucy M.
    Crates, Ross A.
    Culina, Antica
    Farine, Damien R.
    Firth, Josh A.
    Hinde, Camilla A.
    Kidd, Lindall R.
    Milligan, Nicole D.
    Roberts, Stephen J.
    Verhelst, Brecht
    Sheldon, Ben C.
    BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY, 2015, 69 (05) : 857 - 866
  • [38] Inferring Population Decline and Expansion From Microsatellite Data: A Simulation-Based Evaluation of the Msvar Method
    Girod, Christophe
    Vitalis, Renaud
    Leblois, Raphael
    Freville, Helene
    GENETICS, 2011, 188 (01) : 165 - U287
  • [39] AD-LIBS: inferring ancestry across hybrid genomes using low-coverage sequence data
    Nathan K. Schaefer
    Beth Shapiro
    Richard E. Green
    BMC Bioinformatics, 18
  • [40] Inferring demographic parameters in bacterial genomic data using Bayesian and hybrid phylogenetic methods
    Duchene, Sebastian
    Duchene, David A.
    Geoghegan, Jemma L.
    Dyson, Zoe A.
    Hawkey, Jane
    Holt, Kathryn E.
    BMC EVOLUTIONARY BIOLOGY, 2018, 18