A harmonic maps approach to fluid flows

被引:48
作者
Constantin, Olivia [1 ]
Martin, Maria J. [2 ]
机构
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Univ Eastern Finland, Dept Math & Phys, POB 111, Joensuu 80101, Finland
基金
奥地利科学基金会;
关键词
SLOPING BEACH; EDGE WAVES; SCHWARZIAN; MAPPINGS;
D O I
10.1007/s00208-016-1435-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a complete solution to the problem of classifying all two-dimensional ideal fluid flows with harmonic Lagrangian labelling maps; thus, we explicitly provide all solutions, with the specified structural property, to the incompressible two-dimensional Euler equations (in Lagrangian variables).
引用
收藏
页码:1 / 16
页数:16
相关论文
共 19 条
[11]   Finite-amplitude acoustic-gravity waves: exact solutions [J].
Godin, Oleg A. .
JOURNAL OF FLUID MECHANICS, 2015, 767 :52-64
[12]   INSTABILITY OF EQUATORIAL WATER WAVES IN THE f-PLANE [J].
Henry, David ;
Hsu, Hung-Chu .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (03) :909-916
[13]   An exact solution for equatorial geophysical water waves with an underlying current [J].
Henry, David .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2013, 38 :18-21
[14]   Pre-Schwarzian and Schwarzian Derivatives of Harmonic Mappings [J].
Hernandez, Rodrigo ;
Martin, Maria J. .
JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (01) :64-91
[15]   Stable geometric properties of analytic and harmonic functions [J].
Hernandez, Rodrigo ;
Martin, Maria J. .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2013, 155 (02) :343-359
[16]   Instability of edge waves along a sloping beach [J].
Ionescu-Kruse, Delia .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (12) :3999-4012
[17]  
Kuhnel W., 2002, DIFFERENTIAL GEOMETR, V16
[18]   Local stability of Gerstner's waves [J].
Leblanc, S .
JOURNAL OF FLUID MECHANICS, 2004, 506 :245-254
[19]  
Rankine W.J.H., 1863, PHILOS T, V153, P127, DOI DOI 10.1098/RSTL.1863.0006