A harmonic maps approach to fluid flows

被引:48
作者
Constantin, Olivia [1 ]
Martin, Maria J. [2 ]
机构
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Univ Eastern Finland, Dept Math & Phys, POB 111, Joensuu 80101, Finland
基金
奥地利科学基金会;
关键词
SLOPING BEACH; EDGE WAVES; SCHWARZIAN; MAPPINGS;
D O I
10.1007/s00208-016-1435-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a complete solution to the problem of classifying all two-dimensional ideal fluid flows with harmonic Lagrangian labelling maps; thus, we explicitly provide all solutions, with the specified structural property, to the incompressible two-dimensional Euler equations (in Lagrangian variables).
引用
收藏
页码:1 / 16
页数:16
相关论文
共 19 条
[1]  
Abrashkin A. A., 1984, Soviet Physics - Doklady, V29, P370
[2]   Harmonic Maps and Ideal Fluid Flows [J].
Aleman, A. ;
Constantin, A. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 204 (02) :479-513
[3]  
[Anonymous], 1876, VORLESUNGEN MATEMATI
[4]  
Bennet A., 2006, Lagrangian Fluid Dynamics
[5]   The Schwarzian derivative for harmonic mappings [J].
Chuaqui, M ;
Duren, P ;
Osgood, B .
JOURNAL D ANALYSE MATHEMATIQUE, 2003, 91 (1) :329-351
[6]  
CLUNIE J, 1984, ANN ACAD SCI FENN-M, V9, P3
[7]   Edge waves along a sloping beach [J].
Constantin, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (45) :9723-9731
[8]   An exact solution for equatorially trapped waves [J].
Constantin, Adrian .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2012, 117
[9]  
Duren P., 2004, CAMBRIDGE TRACTS MAT, V156
[10]  
Gerstner F, 1809, Ann. Phys., V32, P412, DOI DOI 10.1002/ANDP.18090320808