Synergistically tuning the graphitic degree, porosity, and the configuration of active sites for highly active bifunctional catalysts and Zn-air batteries

被引:17
作者
Gao, Yang [1 ,2 ]
Kong, Debin [1 ,3 ]
Cao, Fengli [1 ]
Teng, Shuai [1 ]
Liang, Tao [1 ]
Luo, Bin [4 ,5 ]
Wang, Bin [1 ,6 ]
Yang, Quan-Hong [2 ]
Zhi, Linjie [1 ,2 ,3 ]
机构
[1] CAS Ctr Excellence Nanosci, Natl Ctr Nanosci & Technol, CAS Key Lab Nanosyst & Hierarch Fabricat, Beijing 100190, Peoples R China
[2] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300350, Peoples R China
[3] China Univ Petr East China, Coll New Energy, Res Ctr Adv Chem Engn & Energy Mat, Qingdao 266580, Peoples R China
[4] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Nanomat Ctr, Brisbane, Qld 4072, Australia
[5] Univ Queensland, Sch Chem Engn, Brisbane, Qld 4072, Australia
[6] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国博士后科学基金; 国家重点研发计划; 中国国家自然科学基金;
关键词
electrocatalysis; bifunctional; Co-N-C; ZIFs; Zn-air battery; OXYGEN REDUCTION; DOPED GRAPHENE; CARBON; ELECTROCATALYSTS; PERFORMANCE; ELECTRODES; POLYANILINE; IRON;
D O I
10.1007/s12274-022-4497-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rational design and tailoring of the structural features of Co-N-C catalysts are urgently required to construct highly efficient bifunctional non-noble metal electrocatalysts for both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Herein, we report a series of carbon-based catalysts with varied structural features, specifically the graphitic degree of carbon, porosity, and the configuration of active sites, and their effects on bifunctional oxygen electrocatalytic reactions. Through the synergistic tuning of these structural factors, the well-tailored Co-N-C catalyst exhibits a high bifunctional electrocatalytic activity, as revealed by a half-wave potential of 0.84 V for ORR and a low overpotential of 420 mV at 10 mA.cm(-2) for OER. More impressively, the Zn-air battery using the optimum catalyst delivers excellent performance including a peak power density of 125.2 mW center dot cm(-2) and a specific capacity of 790.8 mAh.g(Zn)(-1), as well as stable cycling durability, outperforming the noble metals-based catalysts. The first-principles calculations reveal that the interlayer interaction between the pyridinic N-doped graphene and the confined Co nanoparticles increases the electronic states of the active C atoms near the Fermi level, thus enhancing the adsorption of the HOO* intermediate and generating superior catalytic activity for bifunctional oxygen electrocatalysis. By comprehensively studying the structural factors of catalysts, the bifunctional catalytic behaviors, the use in a practical Zn-air device, and theoretical simulations, this work may also give inspirations to the design, use, and understanding of other kinds of catalysts.
引用
收藏
页码:7959 / 7967
页数:9
相关论文
共 49 条
  • [1] Co@Co3O4 Encapsulated in Carbon Nanotube-Grafted Nitrogen-Doped Carbon Polyhedra as an Advanced Bifunctional Oxygen Electrode
    Aijaz, Arshad
    Masa, Justus
    Roesler, Christoph
    Xia, Wei
    Weide, Philipp
    Botz, Alexander J. R.
    Fischer, Roland A.
    Schuhmann, Wolfgang
    Muhler, Martin
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (12) : 4087 - 4091
  • [2] From Bimetallic Metal-Organic Framework to Porous Carbon: High Surface Area and Multicomponent Active Dopants for Excellent Electrocatalysis
    Chen, Yu-Zhen
    Wang, Chengming
    Wu, Zhen-Yu
    Xiong, Yujie
    Xu, Qiang
    Yu, Shu-Hong
    Jiang, Hai-Long
    [J]. ADVANCED MATERIALS, 2015, 27 (34) : 5010 - 5016
  • [3] Atomic-Level Modulation of Electronic Density at Cobalt Single-Atom Sites Derived from Metal-Organic Frameworks: Enhanced Oxygen Reduction Performance
    Chen, Yuanjun
    Gao, Rui
    Ji, Shufang
    Li, Haijing
    Tang, Kun
    Jiang, Peng
    Hu, Haibo
    Zhang, Zedong
    Hao, Haigang
    Qu, Qingyun
    Liang, Xiao
    Chen, Wenxing
    Dong, Juncai
    Wang, Dingsheng
    Li, Yadong
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (06) : 3212 - 3221
  • [4] Chorkendorff I., 2005, CONCEPTS MODERN CATA
  • [5] Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst
    Chung, Hoon T.
    Cullen, David A.
    Higgins, Drew
    Sneed, Brian T.
    Holby, Edward F.
    More, Karren L.
    Zelenay, Piotr
    [J]. SCIENCE, 2017, 357 (6350) : 479 - 483
  • [6] MOF-derived CoNi,CoO,NiO@N-C bifunctional oxygen electrocatalysts for liquid and all-solid-state Zn-air batteries
    Duan, Xinde
    Ren, Shuangshuang
    Ge, Fayuan
    Zhu, Xukun
    Zhang, Mingdao
    Zheng, Hegen
    [J]. NANOSCALE, 2021, 13 (41) : 17655 - 17662
  • [7] MOF-derived Co-MOF,O-doped carbon as trifunctional electrocatalysts to enable highly efficient Zn-air batteries and water-splitting
    Duan, Xinde
    Pan, Na
    Sun, Can
    Zhang, Kexin
    Zhu, Xukun
    Zhang, Mingdao
    Song, Li
    Zheng, Hegen
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2021, 56 : 290 - 298
  • [8] MOF-derived Fe,Co@N-C bifunctional oxygen electrocatalysts for Zn-air batteries
    Duan, Xinde
    Ren, Shuangshuang
    Pan, Na
    Zhang, Mingdao
    Zheng, Hegen
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (18) : 9355 - 9363
  • [9] Atomic cobalt on nitrogen-doped graphene for hydrogen generation
    Fei, Huilong
    Dong, Juncai
    Arellano-Jimenez, M. Josefina
    Ye, Gonglan
    Kim, Nam Dong
    Samuel, Errol L. G.
    Peng, Zhiwei
    Zhu, Zhuan
    Qin, Fan
    Bao, Jiming
    Yacaman, Miguel Jose
    Ajayan, Pulickel M.
    Chen, Dongliang
    Tour, James M.
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [10] Switching effective oxygen reduction and evolution performance by controlled graphitization of a cobalt-nitrogen-carbon framework system
    Gadipelli, Srinivas
    Zhao, Tingting
    Shevlin, Stephen A.
    Guo, Zhengxiao
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (05) : 1661 - 1667