Exposure to combustion derived particulate matter exacerbates influenza infection in neonatal mice by inhibiting IL22 production

被引:12
作者
Kumar, Avinash [1 ,2 ]
Patel, Vivek S. [1 ]
Harding, Jeffrey N. [1 ]
You, Dahui [3 ]
Cormier, Stephania A. [1 ,2 ]
机构
[1] Louisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA
[2] Pennington Biomed Res Ctr, 6400 Perkins Rd, Baton Rouge, LA 70808 USA
[3] Univ Tennessee, Dept Pediat, Hlth Sci Ctr, Memphis, TN USA
关键词
Particulate matter; Influenza; IL-22; Microbiome; Tryptophan metabolites; ARYL-HYDROCARBON RECEPTOR; INNATE LYMPHOID-CELLS; AIR-POLLUTION; INTERLEUKIN; 22; CARDIOVASCULAR-DISEASE; TISSUE HOMEOSTASIS; OXIDATIVE STRESS; IL-22; IMMUNITY; INFLAMMATION;
D O I
10.1186/s12989-021-00438-7
中图分类号
R99 [毒物学(毒理学)];
学科分类号
100405 ;
摘要
Background Particulate matter (PM) containing environmentally persistent free radicals (EPFRs) are formed during various combustion processes, including the thermal remediation of hazardous wastes. Exposure to PM adversely affects respiratory health in infants and is associated with increased morbidity and mortality due to acute lower respiratory tract infections. We previously reported that early-life exposure to PM damages the lung epithelium and suppresses immune responses to influenza virus (Flu) infection, thereby enhancing Flu severity. Interleukin 22 (IL22) is important in resolving lung injury following Flu infection. In the current study, we determined the effects of PM exposure on pulmonary IL22 responses using our neonatal mouse model of Flu infection. Results Exposure to PM resulted in an immediate (0.5-1-day post-exposure; dpe) increase in IL22 expression in the lungs of C57BL/6 neonatal mice; however, this IL22 expression was not maintained and failed to increase with either continued exposure to PM or subsequent Flu infection of PM-exposed mice. This contrasts with increased IL22 expression in age-matched mice exposed to vehicle and Flu infected. Activation of the aryl hydrocarbon receptor (AhR), which mediates the induction and release of IL22 from immune cells, was also transiently increased with PM exposure. The microbiome plays a major role in maintaining epithelial integrity and immune responses by producing various metabolites that act as ligands for AhR. Exposure to PM induced lung microbiota dysbiosis and altered the levels of indole, a microbial metabolite. Treatment with recombinant IL22 or indole-3-carboxaldehyde (I3A) prevented PM associated lung injury. In addition, I3A treatment also protected against increased mortality in Flu-infected mice exposed to PMs. Conclusions Together, these data suggest that exposure to PMs results in failure to sustain IL22 levels and an inability to induce IL22 upon Flu infection. Insufficient levels of IL22 may be responsible for aberrant epithelial repair and immune responses, leading to increased Flu severity in areas of high PM.
引用
收藏
页数:11
相关论文
共 64 条
[1]   IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia [J].
Aujla, Shean J. ;
Chan, Yvonne R. ;
Zheng, Mingquan ;
Fei, Mingjian ;
Askew, David J. ;
Pociask, Derek A. ;
Reinhart, Todd A. ;
McAllister, Florencia ;
Edeal, Jennifer ;
Gaus, Kristi ;
Husain, Shahid ;
Kreindler, James L. ;
Dubin, Patricia J. ;
Pilewski, Joseph M. ;
Myerburg, Mike M. ;
Mason, Carol A. ;
Iwakura, Yoichiro ;
Kolls, Jay K. .
NATURE MEDICINE, 2008, 14 (03) :275-281
[2]   Environmentally persistent free radicals amplify ultrafine particle mediated cellular oxidative stress and cytotoxicity [J].
Balakrishna, Shrilatha ;
Lomnicki, Slawo ;
McAvey, Kevin M. ;
Cole, Richard B. ;
Dellinger, Barry ;
Cormier, Stephania A. .
PARTICLE AND FIBRE TOXICOLOGY, 2009, 6
[3]   Neurodevelopmental Deceleration by Urban Fine Particles from Different Emission Sources: A Longitudinal Observational Study [J].
Basagana, Xavier ;
Esnaola, Mikel ;
Rivas, Ioar ;
Amato, Fulvio ;
Alvarez-Pedrerol, Mar ;
Forns, Joan ;
Lopez-Vicente, Monica ;
Pujol, Jesus ;
Nieuwenhuijsen, Mark ;
Querol, Xavier ;
Sunyer, Jordi .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2016, 124 (10) :1630-1636
[4]   Air pollution and respiratory viral infection [J].
Ciencewicki, Jonathan ;
Jaspers, Ilona .
INHALATION TOXICOLOGY, 2007, 19 (14) :1135-1146
[5]  
Cohen AJ, 2017, LANCET, V389, P1907, DOI [10.1016/S0140-6736(17)30505-6, 10.1016/s0140-6736(17)30505-6]
[6]   Origin and health impacts of emissions of toxic by-products and fine particles from combustion and thermal treatment of hazardous wastes and materials [J].
Cormier, Stephania A. ;
Lomnicki, Slawo ;
Backes, Wayne ;
Dellinger, Barry .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2006, 114 (06) :810-817
[7]   CD1d-mediated activation of group 3 innate lymphoid cells drives IL-22 production [J].
de Guinoa, Julia Saez ;
Jimeno, Rebeca ;
Farhadi, Nazanin ;
Jervis, Peter J. ;
Cox, Liam R. ;
Besra, Gurdyal S. ;
Barral, Patricia .
EMBO REPORTS, 2017, 18 (01) :39-47
[8]   IL-22 defines a novel immune pathway of antifungal resistance [J].
De Luca, A. ;
Zelante, T. ;
D'Angelo, C. ;
Zagarella, S. ;
Fallarino, F. ;
Spreca, A. ;
Iannitti, R. G. ;
Bonifazi, P. ;
Renauld, J-C ;
Bistoni, F. ;
Puccetti, P. ;
Romani, L. .
MUCOSAL IMMUNOLOGY, 2010, 3 (04) :361-373
[9]   Air particulate matter and cardiovascular disease: the epidemiological, biomedical and clinical evidence [J].
Du, Yixing ;
Xu, Xiaohan ;
Chu, Ming ;
Guo, Yan ;
Wang, Junhong .
JOURNAL OF THORACIC DISEASE, 2016, 8 (01) :E8-E19
[10]   Including viral infection data supports an association between particulate pollution and respiratory admissions [J].
Fukuda, Kyoko ;
Hider, Phil N. ;
Epton, Michael J. ;
Jennings, Lance C. ;
Kingham, Simon P. .
AUSTRALIAN AND NEW ZEALAND JOURNAL OF PUBLIC HEALTH, 2011, 35 (02) :163-169