Subordination pathways to fractional diffusion

被引:32
作者
Gorenflo, R. [1 ]
Mainardi, F. [2 ]
机构
[1] Free Univ Berlin, Dept Math & Informat, D-1000 Berlin, Germany
[2] Univ Bologna, Dept Phys, I-40126 Bologna, Italy
关键词
RANDOM-WALK; EQUATIONS;
D O I
10.1140/epjst/e2011-01386-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The uncoupled Continuous Time Random Walk (CTRW) in one space-dimension and under power law regime is splitted into three distinct random walks: (rw(1)), a random walk along the line of natural time, happening in operational time; (w(2)), a random walk along the line of space, happening in operational time; (rw(3)), the inversion of (rw(1)), namely a random walk along the line of operational time, happening in natural time. Via the general integral equation of CTRW and appropriate rescaling, the transition to the diffusion limit is carried out for each of these three random walks. Combining the limits of (rw(1)) and (rw(2)) we get the method of parametric subordination for generating particle paths, whereas combination of (rw(2)) and (rw(3)) yields the subordination integral for the sojourn probability density in space-time fractional diffusion.
引用
收藏
页码:119 / 132
页数:14
相关论文
共 30 条
[1]  
[Anonymous], P NAT WORKSH FRACT C
[2]  
[Anonymous], 1994, Aspects and Applications of the Random Walk
[3]  
BARKAI E, 2001, PHYS REV E, V18
[4]  
Butzer P.L., 2000, Applications of Fractional Calculus in Physics, P1, DOI [10.1142/9789812817747_0001, DOI 10.1142/9789812817747_0001]
[5]  
Feller W., 1971, INTRO PROBABILITY TH
[6]   LANGEVIN-EQUATIONS FOR CONTINUOUS-TIME LEVY FLIGHTS [J].
FOGEDBY, HC .
PHYSICAL REVIEW E, 1994, 50 (02) :1657-1660
[7]   Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation [J].
Fulger, Daniel ;
Scalas, Enrico ;
Germano, Guido .
PHYSICAL REVIEW E, 2008, 77 (02)
[8]   Stochastic calculus for uncoupled continuous-time random walks [J].
Germano, Guido ;
Politi, Mauro ;
Scalas, Enrico ;
Schilling, Reneacute L. .
PHYSICAL REVIEW E, 2009, 79 (06)
[9]  
Gorenflo R, 2003, LECT NOTES PHYS, V621, P148
[10]  
Gorenflo R., 2008, Anomalous transport: Foundations and applications, V4, P93