RFA-Net: Reconstructed Feature Alignment Network for Domain Adaptation Object Detection in Remote Sensing Imagery

被引:20
作者
Zhu, Yangguang [1 ,2 ,3 ,4 ,5 ]
Sun, Xian [1 ,2 ,3 ,4 ,5 ]
Diao, Wenhui [1 ,2 ]
Li, Hao [1 ,2 ]
Fu, Kun [1 ,2 ,3 ,4 ,5 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[2] Chinese Acad Sci, Key Lab Network Informat Syst Technol NIST, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100190, Peoples R China
[5] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Object detection; Feature extraction; Image reconstruction; Adaptation models; Image segmentation; Data models; Semantics; Data augmentation; domain adaptation; feature reconstruction; object detection; pseudo-label filtering; SEGMENTATION; CLASSIFICATION; MULTISCALE; AERIAL;
D O I
10.1109/JSTARS.2022.3190699
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the development of deep learning, great progress has been made in object detection of remote sensing (RS) imagery. However, the object detector is hard to generalize well from one labeled dataset (source domain) to another unlabeled dataset (target domain) due to the discrepancy of data distribution (domain shift). Currently, adversarial-based domain adaptation methods align the semantic features of source and target domain features to alleviate the domain shift. But they fail to avoid the alignment of noisy background features and neglect the instance-level features, which are inappropriate for detection models that focus on instance location and classification. To mitigate domain shift existing in object detection, we propose a reconstructed feature alignment network (RFA-Net) for unsupervised cross-domain object detection in RS imagery. The RFA-Net includes one sequential data augmentation module deployed on data level for providing solid gains on unlabeled data, one sparse feature reconstruction module deployed on feature level to intensify instance feature for feature alignment, and one pseudo-label generation module deployed on label level for the supervision of the unlabeled target domain. Extensive experiments illustrate that our proposed RFA-Net is effective to alleviate the domain shift problem in domain adaptation object detection of RS imagery.
引用
收藏
页码:5689 / 5703
页数:15
相关论文
共 50 条
  • [11] FEATURE-ATTENTIONED OBJECT DETECTION IN REMOTE SENSING IMAGERY
    Li, Chengzheng
    Xu, Chunyan
    Cui, Zhen
    Wang, Dan
    Zhang, Tong
    Yang, Jian
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 3886 - 3890
  • [12] Semantic Information Feature Aggregation Network for Object Detection in Remote Sensing Images
    Guo, Zhe
    Bi, Guoling
    Lv, Hengyi
    Zhao, Yuchen
    Han, Lintao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [13] Feature Split-Merge-Enhancement Network for Remote Sensing Object Detection
    Ma, Wenping
    Li, Na
    Zhu, Hao
    Jiao, Licheng
    Tang, Xu
    Guo, Yuwei
    Hou, Biao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [14] Cross-Layer Attention Network for Small Object Detection in Remote Sensing Imagery
    Li, Yangyang
    Huang, Qin
    Pei, Xuan
    Chen, Yanqiao
    Jiao, Licheng
    Shang, Ronghua
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 2148 - 2161
  • [15] Object Detection in Remote Sensing Imagery Based on Prototype Learning Network With Proposal Relation
    Ni, Kang
    Ma, Tengfei
    Zheng, Zhizhong
    Wang, Peng
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [16] DADETR: Feature Alignment-based Domain Adaptation for Ship Object Detection
    Wu, Junbao
    Meng, Hao
    2024 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, ICMA 2024, 2024, : 1837 - 1842
  • [17] A Path Aggregation Network Based on Residual Feature Enhancement for Object Detection in Remote Sensing Imagery
    Dang, Lanxue
    Huangfu, Panpan
    Hou, Yan-e
    Liu, Yang
    Han, Hongyu
    REMOTE SENSING LETTERS, 2023, 14 (06) : 598 - 608
  • [18] CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote-Sensing Images
    Ming, Qi
    Miao, Lingjuan
    Zhou, Zhiqiang
    Dong, Yunpeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [19] DualDA-Net: Dual-Head Rectification for Cross-Domain Object Detection of Remote Sensing
    Zhu, Yangguang
    Sun, Xian
    Diao, Wenhui
    Wei, Haoran
    Fu, Kun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [20] HOFA-Net: A High-Order Feature Association Network for Dense Object Detection in Remote Sensing
    Xu, Yunpeng
    Wu, Xin
    Wang, Li
    Xu, Lianming
    Shao, Zhengyu
    Fei, Aiguo
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 1513 - 1522