The Lax solution to a Hamilton-Jacobi equation and its generalizations: Part 2

被引:2
作者
Mykytiuk, YV
Plykarpatsky, AK
Blackmore, D [1 ]
机构
[1] New Jersey Inst Technol, Ctr Appl Math & Stat, Dept Math Sci, Newark, NJ 07102 USA
[2] Lvov Ivan Franko State Univ, Dept Mech & Math, UA-29000 Lvov, Ukraine
[3] AGH Univ Sci & Technol, Dept Appl Math, PL-30059 Krakow, Poland
[4] NAS, IAPMM, Dept Nonlinear Math Anal, UA-290601 Lvov, Ukraine
关键词
Lax formula; viscosity solution; Hamilton-Jacobi equation; semicontinuity; Lebesgue measure; F-sigma set;
D O I
10.1016/j.na.2003.08.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is proved that the function defined by the infimum-based Lax formula (for viscosity solutions) provides a solution almost everywhere in x for each fixed t > 0 to the Hamilton-Jacobi, Cauchy problem u(1) + (1)/(2) parallel todelu parallel to(2) = 0, u(x, 0(+)) = v(x), where the Cauchy data function v is lower semicontinuous on real n-space. In addition, a generalization of the Lax formula is developed for the more inclusive Hamilton-Jacobi equation u(1) + (1)/(2) (parallel todeluparallel to(2) - betauparallel touparallel to(2) + <Jx, x>) = 0, where J is a diagonal, positive-definite matrix. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:629 / 640
页数:12
相关论文
共 50 条
[41]   The Parisi formula is a Hamilton-Jacobi equation in Wasserstein space [J].
Mourrat, Jean-Christophe .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2022, 74 (03) :607-629
[42]   Extending the Parisi formula along a Hamilton-Jacobi equation [J].
Mourrat, Jean-Christophe ;
Panchenko, Dmitry .
ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25
[43]   A SINGULAR HAMILTON-JACOBI EQUATION MODELING THE TAIL PROBLEM [J].
Mirrahimi, Sepideh ;
Barles, Guy ;
Perthame, Benoit ;
Souganidis, Panagiotis E. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (06) :4297-4319
[44]   Concentration in the Nonlocal Fisher Equation: the Hamilton-Jacobi Limit [J].
Perthame, Benoit ;
Genieys, Stephane .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2007, 2 (04) :135-151
[45]   LIMIT OF THE INFINITE HORIZON DISCOUNTED HAMILTON-JACOBI EQUATION [J].
Iturriaga, Renato ;
Sanchez-Morgado, Hector .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 15 (03) :623-635
[46]   Viscosity solution of the Hamilton-Jacobi equation arising from a thin film blistering model [J].
Valente, Vanda ;
Caffarelli, Giorgio Vergara .
APPLIED MATHEMATICS AND OPTIMIZATION, 2006, 54 (01) :117-130
[47]   Viscosity Solution of the Hamilton-Jacobi Equation Arising from a Thin Film Blistering Model [J].
Vanda Valente ;
Giorgio Vergara Caffarelli .
Applied Mathematics and Optimization, 2006, 54 :117-130
[48]   Variational optimisation by the solution of a series of Hamilton-Jacobi equations [J].
Venkatesh, PK ;
Petzold, LR ;
Carr, RW ;
Cohen, MH ;
Dean, AM .
PHYSICA D, 2001, 154 (1-2) :15-25
[49]   Convergence of the viscosity solution of non-autonomous Hamilton-Jacobi equations [J].
Cui Chen ;
Ya-Nan Wang ;
Jun Yan .
Science China Mathematics, 2021, 64 :1789-1800
[50]   Convergence of the viscosity solution of non-autonomous Hamilton-Jacobi equations [J].
Chen, Cui ;
Wang, Ya-Nan ;
Yan, Jun .
SCIENCE CHINA-MATHEMATICS, 2021, 64 (08) :1789-1800