The Lax solution to a Hamilton-Jacobi equation and its generalizations: Part 2

被引:2
作者
Mykytiuk, YV
Plykarpatsky, AK
Blackmore, D [1 ]
机构
[1] New Jersey Inst Technol, Ctr Appl Math & Stat, Dept Math Sci, Newark, NJ 07102 USA
[2] Lvov Ivan Franko State Univ, Dept Mech & Math, UA-29000 Lvov, Ukraine
[3] AGH Univ Sci & Technol, Dept Appl Math, PL-30059 Krakow, Poland
[4] NAS, IAPMM, Dept Nonlinear Math Anal, UA-290601 Lvov, Ukraine
关键词
Lax formula; viscosity solution; Hamilton-Jacobi equation; semicontinuity; Lebesgue measure; F-sigma set;
D O I
10.1016/j.na.2003.08.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is proved that the function defined by the infimum-based Lax formula (for viscosity solutions) provides a solution almost everywhere in x for each fixed t > 0 to the Hamilton-Jacobi, Cauchy problem u(1) + (1)/(2) parallel todelu parallel to(2) = 0, u(x, 0(+)) = v(x), where the Cauchy data function v is lower semicontinuous on real n-space. In addition, a generalization of the Lax formula is developed for the more inclusive Hamilton-Jacobi equation u(1) + (1)/(2) (parallel todeluparallel to(2) - betauparallel touparallel to(2) + <Jx, x>) = 0, where J is a diagonal, positive-definite matrix. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:629 / 640
页数:12
相关论文
共 50 条
[31]   A continuous generalized solution of the Hamilton-Jacobi equation with a three-component Hamiltonian [J].
Shagalova, L. G. .
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2022, 28 (01) :257-268
[32]   A solution to Hamilton-Jacobi equation by neural networks and optimal state feedback control [J].
Shimizu, K .
Optimization And Control With Applications, 2005, 96 :461-480
[33]   Generalized solution for a class of Hamilton-Jacobi equations [J].
Zagatti, Sandro .
ADVANCES IN PURE AND APPLIED MATHEMATICS, 2016, 7 (02) :123-141
[34]   Viscosity solution of nonanticipating Hamilton-Jacobi equations [J].
N. Yu. Lukoyanov .
Differential Equations, 2007, 43 :1715-1723
[35]   Solutions of the Schrodinger equation given by solutions of the Hamilton-Jacobi equation [J].
Torres del Castillo, G. F. ;
Sosa Sanchez, C. .
REVISTA MEXICANA DE FISICA, 2016, 62 (06) :534-537
[36]   Regularity properties of viscosity solution of nonconvex Hamilton-Jacobi equations [J].
Nguyen Hoang .
APPLICABLE ANALYSIS, 2019, 98 (06) :1104-1119
[37]   Complete solutions of the Hamilton-Jacobi equation and the envelope method [J].
Torres del Castillo, G. F. ;
Anaya Gonzalez, G. S. .
REVISTA MEXICANA DE FISICA, 2014, 60 (06) :414-418
[38]   Averaging of Hamilton-Jacobi equation in infinite dimensions and application [J].
WANG Shihong Institute of Mathematics Fudan University Shanghai China .
ChineseScienceBulletin, 1998, (01) :30-32
[39]   Canonical Equations for the Generalized Hamilton-Jacobi Equation in DGWITL [J].
Ciletti, M. D. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1974, 13 (03) :262-274
[40]   Averaging of Hamilton-Jacobi equation in infinite dimensions and application [J].
Wang, SH .
CHINESE SCIENCE BULLETIN, 1998, 43 (01) :30-32