The Lax solution to a Hamilton-Jacobi equation and its generalizations: Part 2

被引:2
作者
Mykytiuk, YV
Plykarpatsky, AK
Blackmore, D [1 ]
机构
[1] New Jersey Inst Technol, Ctr Appl Math & Stat, Dept Math Sci, Newark, NJ 07102 USA
[2] Lvov Ivan Franko State Univ, Dept Mech & Math, UA-29000 Lvov, Ukraine
[3] AGH Univ Sci & Technol, Dept Appl Math, PL-30059 Krakow, Poland
[4] NAS, IAPMM, Dept Nonlinear Math Anal, UA-290601 Lvov, Ukraine
关键词
Lax formula; viscosity solution; Hamilton-Jacobi equation; semicontinuity; Lebesgue measure; F-sigma set;
D O I
10.1016/j.na.2003.08.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is proved that the function defined by the infimum-based Lax formula (for viscosity solutions) provides a solution almost everywhere in x for each fixed t > 0 to the Hamilton-Jacobi, Cauchy problem u(1) + (1)/(2) parallel todelu parallel to(2) = 0, u(x, 0(+)) = v(x), where the Cauchy data function v is lower semicontinuous on real n-space. In addition, a generalization of the Lax formula is developed for the more inclusive Hamilton-Jacobi equation u(1) + (1)/(2) (parallel todeluparallel to(2) - betauparallel touparallel to(2) + <Jx, x>) = 0, where J is a diagonal, positive-definite matrix. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:629 / 640
页数:12
相关论文
共 50 条
  • [21] Solutions to the Hamilton-Jacobi Equation With Algebraic Gradients
    Ohtsuka, Toshiyuki
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (08) : 1874 - 1885
  • [22] Subcritical Hamilton-Jacobi fractional equation in RN
    Dlotko, Tomasz
    Kania, Maria B.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (12) : 2547 - 2560
  • [23] Asymptotic stability of solutions to the Hamilton-Jacobi equation
    Xie, Shunxi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 470 (02) : 1030 - 1045
  • [24] A Geometric Framework for Discrete Hamilton-Jacobi Equation
    Barbero-Linan, M.
    Delgado-Tellez, M.
    de Diego, D. Martin
    XX INTERNATIONAL FALL WORKSHOP ON GEOMETRY AND PHYSICS, 2012, 1460 : 164 - 168
  • [25] Group analysis of a Hamilton-Jacobi type equation
    Lobo, Jervin Zen
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2023, 26 (01) : 51 - 66
  • [26] On the Hamilton-Jacobi equation in the framework of generalized functions
    Fernandez, Roseli
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 382 (01) : 487 - 502
  • [27] Boundary singularities and characteristics of Hamilton-Jacobi equation
    Melikyan, A.
    Olsder, G. J.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2010, 16 (01) : 77 - 99
  • [28] THE HAMILTON-JACOBI EQUATION, INTEGRABILITY, AND NONHOLONOMIC SYSTEMS
    Bates, Larry M.
    Fasso, Francesco
    Sansonetto, Nicola
    JOURNAL OF GEOMETRIC MECHANICS, 2014, 6 (04) : 441 - 449
  • [29] The Dual Hamilton-Jacobi Equation and the Poincaré Inequality
    He, Rigao
    Wang, Wei
    Fang, Jianglin
    Li, Yuanlin
    MATHEMATICS, 2024, 12 (24)
  • [30] The solution of a modified Hamilton-Jacobi equation with Lorentz-violating scalar field
    Zhang, Jie
    Liu, Menquan
    Liu, Zhie
    Sha, Bei
    Tan, Xia
    Liu, Yuzhen
    GENERAL RELATIVITY AND GRAVITATION, 2020, 52 (11)