The Lax solution to a Hamilton-Jacobi equation and its generalizations: Part 2

被引:2
作者
Mykytiuk, YV
Plykarpatsky, AK
Blackmore, D [1 ]
机构
[1] New Jersey Inst Technol, Ctr Appl Math & Stat, Dept Math Sci, Newark, NJ 07102 USA
[2] Lvov Ivan Franko State Univ, Dept Mech & Math, UA-29000 Lvov, Ukraine
[3] AGH Univ Sci & Technol, Dept Appl Math, PL-30059 Krakow, Poland
[4] NAS, IAPMM, Dept Nonlinear Math Anal, UA-290601 Lvov, Ukraine
关键词
Lax formula; viscosity solution; Hamilton-Jacobi equation; semicontinuity; Lebesgue measure; F-sigma set;
D O I
10.1016/j.na.2003.08.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is proved that the function defined by the infimum-based Lax formula (for viscosity solutions) provides a solution almost everywhere in x for each fixed t > 0 to the Hamilton-Jacobi, Cauchy problem u(1) + (1)/(2) parallel todelu parallel to(2) = 0, u(x, 0(+)) = v(x), where the Cauchy data function v is lower semicontinuous on real n-space. In addition, a generalization of the Lax formula is developed for the more inclusive Hamilton-Jacobi equation u(1) + (1)/(2) (parallel todeluparallel to(2) - betauparallel touparallel to(2) + <Jx, x>) = 0, where J is a diagonal, positive-definite matrix. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:629 / 640
页数:12
相关论文
共 50 条
[21]   Subcritical Hamilton-Jacobi fractional equation in RN [J].
Dlotko, Tomasz ;
Kania, Maria B. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (12) :2547-2560
[22]   Solutions to the Hamilton-Jacobi Equation With Algebraic Gradients [J].
Ohtsuka, Toshiyuki .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (08) :1874-1885
[23]   A Geometric Framework for Discrete Hamilton-Jacobi Equation [J].
Barbero-Linan, M. ;
Delgado-Tellez, M. ;
de Diego, D. Martin .
XX INTERNATIONAL FALL WORKSHOP ON GEOMETRY AND PHYSICS, 2012, 1460 :164-168
[24]   Asymptotic stability of solutions to the Hamilton-Jacobi equation [J].
Xie, Shunxi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 470 (02) :1030-1045
[25]   Group analysis of a Hamilton-Jacobi type equation [J].
Lobo, Jervin Zen .
JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2023, 26 (01) :51-66
[26]   On the Hamilton-Jacobi equation in the framework of generalized functions [J].
Fernandez, Roseli .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 382 (01) :487-502
[27]   THE HAMILTON-JACOBI EQUATION, INTEGRABILITY, AND NONHOLONOMIC SYSTEMS [J].
Bates, Larry M. ;
Fasso, Francesco ;
Sansonetto, Nicola .
JOURNAL OF GEOMETRIC MECHANICS, 2014, 6 (04) :441-449
[28]   Boundary singularities and characteristics of Hamilton-Jacobi equation [J].
Melikyan, A. ;
Olsder, G. J. .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2010, 16 (01) :77-99
[29]   The Dual Hamilton-Jacobi Equation and the Poincaré Inequality [J].
He, Rigao ;
Wang, Wei ;
Fang, Jianglin ;
Li, Yuanlin .
MATHEMATICS, 2024, 12 (24)
[30]   The solution of a modified Hamilton-Jacobi equation with Lorentz-violating scalar field [J].
Zhang, Jie ;
Liu, Menquan ;
Liu, Zhie ;
Sha, Bei ;
Tan, Xia ;
Liu, Yuzhen .
GENERAL RELATIVITY AND GRAVITATION, 2020, 52 (11)