The Lax solution to a Hamilton-Jacobi equation and its generalizations: Part 2

被引:2
作者
Mykytiuk, YV
Plykarpatsky, AK
Blackmore, D [1 ]
机构
[1] New Jersey Inst Technol, Ctr Appl Math & Stat, Dept Math Sci, Newark, NJ 07102 USA
[2] Lvov Ivan Franko State Univ, Dept Mech & Math, UA-29000 Lvov, Ukraine
[3] AGH Univ Sci & Technol, Dept Appl Math, PL-30059 Krakow, Poland
[4] NAS, IAPMM, Dept Nonlinear Math Anal, UA-290601 Lvov, Ukraine
关键词
Lax formula; viscosity solution; Hamilton-Jacobi equation; semicontinuity; Lebesgue measure; F-sigma set;
D O I
10.1016/j.na.2003.08.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is proved that the function defined by the infimum-based Lax formula (for viscosity solutions) provides a solution almost everywhere in x for each fixed t > 0 to the Hamilton-Jacobi, Cauchy problem u(1) + (1)/(2) parallel todelu parallel to(2) = 0, u(x, 0(+)) = v(x), where the Cauchy data function v is lower semicontinuous on real n-space. In addition, a generalization of the Lax formula is developed for the more inclusive Hamilton-Jacobi equation u(1) + (1)/(2) (parallel todeluparallel to(2) - betauparallel touparallel to(2) + <Jx, x>) = 0, where J is a diagonal, positive-definite matrix. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:629 / 640
页数:12
相关论文
共 50 条
[11]   On the differentiability of the solution to the Hamilton-Jacobi equation with critical fractional diffusion [J].
Silvestre, Luis .
ADVANCES IN MATHEMATICS, 2011, 226 (02) :2020-2039
[13]   The Hamilton-Jacobi equation on Lie affgebroids [J].
Marrero, J. C. ;
Sosa, D. .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (03) :605-622
[14]   Lagrangian submanifolds and the Hamilton-Jacobi equation [J].
Barbero-Linan, Maria ;
de Leon, Manuel ;
Martin de Diego, David .
MONATSHEFTE FUR MATHEMATIK, 2013, 171 (3-4) :269-290
[15]   KINEMATIC REDUCTION AND THE HAMILTON-JACOBI EQUATION [J].
Barbero-Linan, Maria ;
de Leon, Manuel ;
Martin de Diego, David ;
Marrero, Juan C. ;
Munoz-Lecanda, Miguel C. .
JOURNAL OF GEOMETRIC MECHANICS, 2012, 4 (03) :207-237
[16]   HAMILTON-JACOBI EQUATION FOR DESCRIPTOR SYSTEMS [J].
XU, H ;
MIZUKAMI, K .
SYSTEMS & CONTROL LETTERS, 1993, 21 (04) :321-327
[17]   NONHOLONOMIC HAMILTON-JACOBI EQUATION AND INTEGRABILITY [J].
Ohsawa, Tomoki ;
Bloch, Anthony M. .
JOURNAL OF GEOMETRIC MECHANICS, 2009, 1 (04) :461-481
[18]   Generation of solutions of the Hamilton-Jacobi equation [J].
Torres del Castillo, G. F. .
REVISTA MEXICANA DE FISICA, 2014, 60 (01) :75-79
[19]   An approximation scheme for a Hamilton-Jacobi equation defined on a network [J].
Camilli, Fabio ;
Festa, Adriano ;
Schieborn, Dirk .
APPLIED NUMERICAL MATHEMATICS, 2013, 73 :33-47
[20]   Variational and viscosity operators for the evolutionary Hamilton-Jacobi equation [J].
Roos, Valentine .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (04)