Role of dark exciton states in the relaxation dynamics of bright 1s excitons in monolayer WSe2

被引:5
作者
Kusaba, Satoshi [1 ]
Watanabe, Kenji [2 ]
Taniguchi, Takashi [3 ]
Yanagi, Kazuhiro [4 ]
Tanaka, Koichiro [1 ,5 ]
机构
[1] Kyoto Univ, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan
[2] Natl Inst Mat Sci, Funct Mat Res Ctr, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[3] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[4] Tokyo Metropolitan Univ, Dept Phys, Hachioji, Tokyo 1920397, Japan
[5] Kyoto Univ, Inst Integrated Cell Mat Sci, Sakyo Ku, Kyoto 6068501, Japan
关键词
VALLEY POLARIZATION; LAYER; ANNIHILATION; GENERATION; COHERENCE; MOS2; MONO; WS2;
D O I
10.1063/5.0064795
中图分类号
O59 [应用物理学];
学科分类号
摘要
Monolayer transition metal dichalcogenides (1L-TMDs) are excellent platforms for exciton physics. In tungsten-based 1L-TMDs, the existence of dark excitons at lower energy has important roles for bright exciton relaxation. However, the detailed relaxation dynamics from bright to dark excitons have not been revealed sufficiently. In this paper, we studied the rise dynamics of out-of-plane polarized photoluminescence (PL) from spin-forbidden dark excitons in monolayer WSe2. Under conditions of resonant excitation to the bright 1s excitons, PL from the spin-forbidden dark exciton has a finite rise time of a few tens of picoseconds, which suggests that intermediate states, probably hot indirect dark excitons, should play an important role in the relaxation pathway from the bright to the spin-forbidden dark excitons. The excitation density dependence indicates that exciton-exciton scattering should promote faster relaxation to the spin-forbidden dark excitons. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:6
相关论文
共 50 条
[1]   Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers [J].
Ajayi, Obafunso A. ;
Ardelean, Jenny V. ;
Shepard, Gabriella D. ;
Wang, Jue ;
Antony, Abhinandan ;
Taniguchi, Takeshi ;
Watanabe, Kenji ;
Heinz, Tony F. ;
Strauf, Stefan ;
Zhu, X-Y ;
Hone, James C. .
2D MATERIALS, 2017, 4 (03)
[2]   Phonon-Assisted Photoluminescence from Indirect Excitons in Monolayers of Transition-Metal Dichalcogenides [J].
Brem, Samuel ;
Ekman, August ;
Christiansen, Dominik ;
Katsch, Florian ;
Selig, Malte ;
Robert, Cedric ;
Marie, Xavier ;
Urbaszek, Bernhard ;
Knorr, Andreas ;
Malic, Ermin .
NANO LETTERS, 2020, 20 (04) :2849-2856
[3]   Excitonic Linewidth Approaching the Homogeneous Limit in MoS2-Based van der Waals Heterostructures [J].
Cadiz, F. ;
Courtade, E. ;
Robert, C. ;
Wang, G. ;
Shen, Y. ;
Cai, H. ;
Taniguchi, T. ;
Watanabe, K. ;
Carrere, H. ;
Lagarde, D. ;
Manca, M. ;
Amand, T. ;
Renucci, P. ;
Tongay, S. ;
Marie, X. ;
Urbaszek, B. .
PHYSICAL REVIEW X, 2017, 7 (02)
[4]   Valley-selective circular dichroism of monolayer molybdenum disulphide [J].
Cao, Ting ;
Wang, Gang ;
Han, Wenpeng ;
Ye, Huiqi ;
Zhu, Chuanrui ;
Shi, Junren ;
Niu, Qian ;
Tan, Pingheng ;
Wang, Enge ;
Liu, Baoli ;
Feng, Ji .
NATURE COMMUNICATIONS, 2012, 3
[5]   Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2 [J].
Chernikov, Alexey ;
Berkelbach, Timothy C. ;
Hill, Heather M. ;
Rigosi, Albert ;
Li, Yilei ;
Aslan, Ozgur Burak ;
Reichman, David R. ;
Hybertsen, Mark S. ;
Heinz, Tony F. .
PHYSICAL REVIEW LETTERS, 2014, 113 (07)
[6]   Transient Absorption Microscopy of Mono layer and Bulk WSe2 [J].
Cui, Qiannan ;
Ceballos, Frank ;
Kumar, Nardeep ;
Zhao, Hui .
ACS NANO, 2014, 8 (03) :2970-2976
[7]  
Erkensten D., ARXIV210605035
[8]   Exciton-exciton interaction in transition metal dichalcogenide monolayers and van der Waals heterostructures [J].
Erkensten, Daniel ;
Brem, Samuel ;
Malic, Ermin .
PHYSICAL REVIEW B, 2021, 103 (04)
[9]   Exciton and trion dynamics in atomically thin MoSe2 and WSe2: Effect of localization [J].
Godde, T. ;
Schmidt, D. ;
Schmutzler, J. ;
Assmann, M. ;
Debus, J. ;
Withers, F. ;
Alexeev, E. M. ;
Del Pozo-Zamudio, O. ;
Skrypka, O. V. ;
Novoselov, K. S. ;
Bayer, M. ;
Tartakovskii, A. I. .
PHYSICAL REVIEW B, 2016, 94 (16)
[10]  
Hao K, 2016, NAT PHYS, V12, P677, DOI [10.1038/nphys3674, 10.1038/NPHYS3674]