Improving the electrochemical performances of spherical LiNi0.5Mn1.5O4 by Fe2O3 surface coating for lithium-ion batteries

被引:44
作者
Wang, Gang [1 ]
Wen, Weicheng [1 ]
Chen, Shuhua [1 ]
Yu, Ruizhi [1 ]
Wang, Xianyou [1 ]
Yang, Xiukang [1 ]
机构
[1] Xiangtan Univ, Sch Chem, Hunan Prov Key Lab Electrochem Energy Storage & C, Key Lab Environm Friendly Chem & Applicat,Minist, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; High voltage spinel cathode material; Surface modification; Cyclic stability; Rate capability; SPINEL LINI0.5MN1.5O4; CATHODE MATERIALS; ELECTRODE MATERIALS; LIMN1.5NI0.5O4; SUBSTITUTION; STABILITY; LICOO2; IMPROVEMENT; CAPACITY; ZNO;
D O I
10.1016/j.electacta.2016.07.025
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The spherical LiNi0.5Mn1.5O4 cathode material synthesized by a co-precipitation method has been modified by Fe2O3 through a simple chemical precipitation method. The effects of Fe2O3 coating on the structure and property of LiNi0.5Mn1.5O4 cathode have been carefully investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX) and atomic absorption spectroscopy (AAS). The results show that the Fe2O3 coating layer covered the surfaces of the spherical LiNi0.5Mn1.5O4 particles does not change the crystallographic structure of LiNi0.5Mn1.5O4, but it can protect the surface of the active materials from electrolyte erosion and suppresses the dissolution of transition metal elements. The effects of Fe2O3 coating layer on the electrochemical performances of LiNi0.5Mn1.5O4 have also been investigated systematically by the charge-discharge testing and AC impedance spectroscopy. Compared with the pristine LiNi0.5Mn1.5O4, the Fe2O3 modified material exhibits remarkably enhanced cyclic stability and excellent rate capability. In addition, surface modification of the LiNi0.5Mn1.5O4 is found to be an effective route for suppressing the increase of the impedance during the storage process at elevated temperatures. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:791 / 799
页数:9
相关论文
共 40 条
  • [1] The role of particle size on the electrochemical properties at 25 and at 55 °C of the LiCr0.2Ni0.4Mn1.4O4 spinel as 5 V-cathode materials for lithium-ion batteries
    Aklalouch, Mohamed
    Rojas, Rosa M.
    Maria Rojo, Jose
    Saadoune, Ismael
    Manuel Amarilla, Jose
    [J]. ELECTROCHIMICA ACTA, 2009, 54 (28) : 7542 - 7550
  • [2] Synergistic effects of double substitution in LiNi0.5-yFeyMn1.5O4 spinel as 5 V cathode materials
    Alcántara, R
    Jaraba, M
    Lavela, P
    Lloris, JM
    Vicente, CP
    Tirado, JL
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (01) : A13 - A18
  • [3] X-ray diffraction and electrochemical impedance spectroscopy study of zinc coated LiNi0.5Mn1.5O4 electrodes
    Alcántara, R
    Jaraba, M
    Lavela, P
    Tirado, JL
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2004, 566 (01) : 187 - 192
  • [4] Effects of coating with gold on the performance of nanosized LiNi0.5Mn1.5O4 for lithium batteries
    Arrebola, J.
    Caballero, A.
    Hernan, L.
    Morales, J.
    Castellon, E. Rodriguez
    Barrado, J. R. Ramos
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (03) : A178 - A184
  • [5] Building a Better Battery
    Chiang, Yet-Ming
    [J]. SCIENCE, 2010, 330 (6010) : 1485 - 1486
  • [6] Effects of the nanostructured SiO2 coating on the performance of LiNi0.5Mn1.5O4 cathode materials for high-voltage Li-ion batteries
    Fan, Yukai
    Wang, Jianming
    Tang, Zheng
    He, Weichun
    Zhang, Jianqing
    [J]. ELECTROCHIMICA ACTA, 2007, 52 (11) : 3870 - 3875
  • [7] Preparation and electrochemical properties of high-voltage cathode materials, LiMyNi0.5-yMn1.5O4 (M = Fe, Cu, Al, Mg; y=0.0-0.4)
    Fey, GTK
    Lu, CZ
    Kumar, TP
    [J]. JOURNAL OF POWER SOURCES, 2003, 115 (02) : 332 - 345
  • [8] Challenges for rechargeable batteries
    Goodenough, J. B.
    Kim, Youngsik
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (16) : 6688 - 6694
  • [9] Improving the cycling stability of LiCoO2 at 4.5 V through surface modification by Fe2O3 coating
    Hao, Qin
    Xu, Caixia
    Jia, Suzhen
    Zhao, Xiaoyun
    [J]. ELECTROCHIMICA ACTA, 2013, 113 : 439 - 445
  • [10] Effect of Al-substitution on the stability of LiMn2O4 spinel, synthesized by citric acid sol-gel method
    Hwang, BJ
    Santhanam, R
    Liu, DG
    Tsai, YW
    [J]. JOURNAL OF POWER SOURCES, 2001, 102 (1-2) : 326 - 331