Performance of genomic prediction within and across generations in maritime pine

被引:68
作者
Bartholome, Jerome [1 ]
Van Heerwaarden, Joost [2 ]
Isik, Fikret [3 ]
Boury, Christophe [1 ]
Vidal, Marjorie [1 ,4 ]
Plomion, Christophe [1 ]
Bouffier, Laurent [1 ]
机构
[1] Univ Bordeaux, INRA, BIOGECO, F-33610 Cestas, France
[2] Univ Wageningen & Res Ctr, Biometris, NL-6700 AC Wageningen, Netherlands
[3] North Carolina State Univ, Dept Forestry & Environm Resources, Raleigh, NC 27695 USA
[4] Genet & Biotechnol Team, Biotechnol & Adv Silviculture Dept, FCBA, F-33610 Cestas, France
关键词
Genomic selection; Growth; Multiple generations; Pinus pinaster; Progeny validation; Relatedness; Stem straightness; ESTIMATED BREEDING VALUES; FULL PEDIGREE; LINKAGE DISEQUILIBRIUM; GENOMEWIDE SELECTION; QUANTITATIVE TRAITS; RELATIONSHIP MATRIX; MOLECULAR MARKERS; CLONED POPULATION; GENETIC DIVERSITY; UNIT TIME;
D O I
10.1186/s12864-016-2879-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Genomic selection (GS) is a promising approach for decreasing breeding cycle length in forest trees. Assessment of progeny performance and of the prediction accuracy of GS models over generations is therefore a key issue. Results: A reference population of maritime pine (Pinus pinaster) with an estimated effective inbreeding population size (status number) of 25 was first selected with simulated data. This reference population (n = 818) covered three generations (G0, G1 and G2) and was genotyped with 4436 single-nucleotide polymorphism (SNP) markers. We evaluated the effects on prediction accuracy of both the relatedness between the calibration and validation sets and validation on the basis of progeny performance. Pedigree-based (best linear unbiased prediction, ABLUP) and marker-based (genomic BLUP and Bayesian LASSO) models were used to predict breeding values for three different traits: circumference, height and stem straightness. On average, the ABLUP model outperformed genomic prediction models, with a maximum difference in prediction accuracies of 0.12, depending on the trait and the validation method. A mean difference in prediction accuracy of 0.17 was found between validation methods differing in terms of relatedness. Including the progenitors in the calibration set reduced this difference in prediction accuracy to 0.03. When only genotypes from the G0 and G1 generations were used in the calibration set and genotypes from G2 were used in the validation set (progeny validation), prediction accuracies ranged from 0.70 to 0.85. Conclusions: This study suggests that the training of prediction models on parental populations can predict the genetic merit of the progeny with high accuracy: an encouraging result for the implementation of GS in the maritime pine breeding program.
引用
收藏
页数:14
相关论文
共 77 条
[1]   Merlin-rapid analysis of dense genetic maps using sparse gene flow trees [J].
Abecasis, GR ;
Cherny, SS ;
Cookson, WO ;
Cardon, LR .
NATURE GENETICS, 2002, 30 (01) :97-101
[2]   Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score [J].
Aguilar, I. ;
Misztal, I. ;
Johnson, D. L. ;
Legarra, A. ;
Tsuruta, S. ;
Lawlor, T. J. .
JOURNAL OF DAIRY SCIENCE, 2010, 93 (02) :743-752
[3]   Accuracy and Training Population Design for Genomic Selection on Quantitative Traits in Elite North American Oats [J].
Asoro, Franco G. ;
Newell, Mark A. ;
Beavis, William D. ;
Scott, M. Paul ;
Jannink, Jean-Luc .
PLANT GENOME, 2011, 4 (02) :132-144
[4]   Long-term response to genomic selection: effects of estimation method and reference population structure for different genetic architectures [J].
Bastiaansen, John W. M. ;
Coster, Albart ;
Calus, Mario P. L. ;
van Arendonk, Johan A. M. ;
Bovenhuis, Henk .
GENETICS SELECTION EVOLUTION, 2012, 44 :3
[5]  
Beaulieu J, 1998, TREE PHYSIOL, V18, P817
[6]  
Beaulieu J, 2014, HEREDITY
[7]   Genomic selection accuracies within and between environments and small breeding groups in white spruce [J].
Beaulieu, Jean ;
Doerksen, Trevor K. ;
MacKay, John ;
Rainville, Andre ;
Bousquet, Jean .
BMC GENOMICS, 2014, 15
[8]   Prospects for genomewide selection for quantitative traits in maize [J].
Bernardo, Rex ;
Yu, Jianming .
CROP SCIENCE, 2007, 47 (03) :1082-1090
[9]   Accuracy of genomic selection using different methods to define haplotypes [J].
Calus, M. P. L. ;
Meuwissen, T. H. E. ;
de Roos, A. P. W. ;
Veerkamp, R. F. .
GENETICS, 2008, 178 (01) :553-561
[10]   De novo assembly of maritime pine transcriptome: implications for forest breeding and biotechnology [J].
Canales, Javier ;
Bautista, Rocio ;
Label, Philippe ;
Gomez-Maldonado, Josefa ;
Lesur, Isabelle ;
Fernandez-Pozo, Noe ;
Rueda-Lopez, Marina ;
Guerrero-Fernandez, Dario ;
Castro-Rodriguez, Vanessa ;
Benzekri, Hicham ;
Canas, Rafael A. ;
Guevara, Maria-Angeles ;
Rodrigues, Andreia ;
Seoane, Pedro ;
Teyssier, Caroline ;
Morel, Alexandre ;
Ehrenmann, Francois ;
Le Provost, Gregoire ;
Lalanne, Celine ;
Noirot, Celine ;
Klopp, Christophe ;
Reymond, Isabelle ;
Garcia-Gutierrez, Angel ;
Trontin, Jean-Francois ;
Lelu-Walter, Marie-Anne ;
Miguel, Celia ;
Teresa Cervera, Maria ;
Canton, Francisco R. ;
Plomion, Christophe ;
Harvengt, Luc ;
Avila, Concepcion ;
Gonzalo Claros, M. ;
Canovas, Francisco M. .
PLANT BIOTECHNOLOGY JOURNAL, 2014, 12 (03) :286-299