Does recombination improve selection on codon usage? Lessons from nematode and fly complete genomes

被引:195
作者
Marais, G [1 ]
Mouchiroud, D [1 ]
Duret, L [1 ]
机构
[1] Univ Lyon 1, CNRS, Unite Mixte Rech 5558, Lab Biometrie & Biol Evolut, F-69622 Villeurbanne, France
关键词
D O I
10.1073/pnas.091427698
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Understanding the factors responsible for variations in mutation patterns and selection efficacy along chromosomes is a prerequisite for deciphering genome sequences. Population genetics models predict a positive correlation between the efficacy of selection at a given locus and the local rate of recombination because of Hill-Robertson effects. Codon usage is considered one of the most striking examples that support this prediction at the molecular level. in a wide range of species including Caenorhabditis elegans and Drosophila melanogaster, codon usage is essentially shaped by selection acting for translational efficiency. Codon usage bias correlates positively with recombination rate in Drosophila, apparently supporting the hypothesis that selection on codon usage is improved by recombination. Here we present an exhaustive analysis of codon usage in C. elegans and D. melanogaster complete genomes. We show that in both genomes there is a positive correlation between recombination rate and the frequency of optimal codons, However, we demonstrate that in both species, this effect is due to a mutational bias toward G and C bases in regions of high recombination rate, possibly as a direct consequence of the recombination process. The correlation between codon usage bias and recombination rate in these species appears to be essentially determined by recombination-dependent mutational patterns, rather than selective effects. This result highlights that it is necessary to take into account the mutagenic effect of recombination to understand the evolutionary role and impact of recombination.
引用
收藏
页码:5688 / 5692
页数:5
相关论文
共 35 条
  • [1] The genome sequence of Drosophila melanogaster
    Adams, MD
    Celniker, SE
    Holt, RA
    Evans, CA
    Gocayne, JD
    Amanatides, PG
    Scherer, SE
    Li, PW
    Hoskins, RA
    Galle, RF
    George, RA
    Lewis, SE
    Richards, S
    Ashburner, M
    Henderson, SN
    Sutton, GG
    Wortman, JR
    Yandell, MD
    Zhang, Q
    Chen, LX
    Brandon, RC
    Rogers, YHC
    Blazej, RG
    Champe, M
    Pfeiffer, BD
    Wan, KH
    Doyle, C
    Baxter, EG
    Helt, G
    Nelson, CR
    Miklos, GLG
    Abril, JF
    Agbayani, A
    An, HJ
    Andrews-Pfannkoch, C
    Baldwin, D
    Ballew, RM
    Basu, A
    Baxendale, J
    Bayraktaroglu, L
    Beasley, EM
    Beeson, KY
    Benos, PV
    Berman, BP
    Bhandari, D
    Bolshakov, S
    Borkova, D
    Botchan, MR
    Bouck, J
    Brokstein, P
    [J]. SCIENCE, 2000, 287 (5461) : 2185 - 2195
  • [2] Mutation pressure, natural selection, and the evolution of base composition in Drosophila
    Akashi, H
    Kliman, RM
    Eyre-Walker, A
    [J]. GENETICA, 1998, 102-3 (0) : 49 - 60
  • [3] AKASHI H, 1995, GENETICS, V139, P1067
  • [4] Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
    Altschul, SF
    Madden, TL
    Schaffer, AA
    Zhang, JH
    Zhang, Z
    Miller, W
    Lipman, DJ
    [J]. NUCLEIC ACIDS RESEARCH, 1997, 25 (17) : 3389 - 3402
  • [5] BARNES TM, 1995, GENETICS, V141, P159
  • [6] Clustering of meiotic double-strand breaks on yeast chromosome III
    Baudat, F
    Nicolas, A
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (10) : 5213 - 5218
  • [7] LEVELS OF NATURALLY-OCCURRING DNA POLYMORPHISM CORRELATE WITH RECOMBINATION RATES IN DROSOPHILA-MELANOGASTER
    BEGUN, DJ
    AQUADRO, CF
    [J]. NATURE, 1992, 356 (6369) : 519 - 520
  • [8] GenBank
    Benson, DA
    Boguski, MS
    Lipman, DJ
    Ostell, J
    Ouellette, BFF
    Rapp, BA
    Wheeler, DL
    [J]. NUCLEIC ACIDS RESEARCH, 1999, 27 (01) : 12 - 17
  • [9] DIFFERENT BASE BASE MISPAIRS ARE CORRECTED WITH DIFFERENT EFFICIENCIES AND SPECIFICITIES IN MONKEY KIDNEY-CELLS
    BROWN, TC
    JIRICNY, J
    [J]. CELL, 1988, 54 (05) : 705 - 711
  • [10] COEVOLUTION OF CODON USAGE AND TRANSFER-RNA ABUNDANCE
    BULMER, M
    [J]. NATURE, 1987, 325 (6106) : 728 - 730