Second-order gauge invariant perturbation theory - Perturbative curvatures in the two-parameter case

被引:41
作者
Nakamura, K [1 ]
机构
[1] Grad Univ Adv Studies, Dept Astron Sci, Mitaka, Tokyo 1818588, Japan
来源
PROGRESS OF THEORETICAL PHYSICS | 2005年 / 113卷 / 03期
关键词
D O I
10.1143/PTP.113.481
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on the gauge invariant variables proposed in our previous paper [K. Nakamura, Prog. Theor. Phys. 110 (2003), 723], some formulae for the perturbative curvatures of each order are derived. We follow the general framework of the second-order gauge invariant perturbation theory on an arbitrary background spacetime to derive these formulae. It is found that these perturbative curvatures have the same form as those given in the definitions of gauge invariant variables for arbitrary perturbative fields, which were proposed in the above paper. As a result, we explicitly see that any perturbative Einstein equation can be given in terms of a gauge invariant form. We briefly discuss physical situations to which this framework should be applied.
引用
收藏
页码:481 / 511
页数:31
相关论文
共 42 条
[1]   GAUGE-INVARIANT COSMOLOGICAL PERTURBATIONS [J].
BARDEEN, JM .
PHYSICAL REVIEW D, 1980, 22 (08) :1882-1905
[2]  
Bartolo N, 2004, J HIGH ENERGY PHYS
[3]   Non-Gaussianity in the curvaton scenario [J].
Bartolo, N ;
Matarrese, S ;
Riotto, A .
PHYSICAL REVIEW D, 2004, 69 (04)
[4]  
BARTOLO N, ASTROPH0406398
[5]   Two-parameter nonlinear spacetime perturbations: gauge transformations and gauge invariance [J].
Bruni, M ;
Gualtieri, L ;
Sopuerta, CF .
CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (03) :535-556
[6]   Observables and gauge invariance in the theory of nonlinear spacetime perturbations [J].
Bruni, M ;
Sonego, S .
CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (07) :L29-L36
[7]   Perturbations of spacetime: gauge transformations and gauge invariance at second order and beyond [J].
Bruni, M ;
Matarrese, S ;
Mollerach, S ;
Sonego, S .
CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (09) :2585-2606
[8]  
Chandrasekhar S., 1983, The mathematical theory of black holes
[9]   Post-Minkowski expansion of general relativity [J].
Detweiler, S ;
Brown, LH .
PHYSICAL REVIEW D, 1997, 56 (02) :826-841
[10]   Gravity in the Randall-Sundrum brane world [J].
Garriga, J ;
Tanaka, T .
PHYSICAL REVIEW LETTERS, 2000, 84 (13) :2778-2781