A time-domain vector potential formulation for the solution of electromagnetic problems

被引:10
作者
De Flaviis, F [1 ]
Noro, MG
Diaz, RE
Franceschetti, G
Alexopoulos, NG
机构
[1] Univ Calif Irvine, Dept Elect & Comp Engn, Irvine, CA 90269 USA
[2] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[3] Northrop Grumman, Mil Aircraft Syst Div, Pico Rivera, CA 90660 USA
[4] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
关键词
D O I
10.1109/75.720465
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present an alternative vector potential formulation of Maxwell's equations derived upon introduction of a quantity related to the Hertz potential. Once space and time are discretized, within this formulation the electric field and vector potential components are condensed in the same point in the elementary cell. In three dimensions the formulation offers an alternative to finite-difference time-domain (FDTD) method; when reduced to a two-dimensional (2-D) problem, only two variables, instead of three, are necessary, implying a net memory saving of 1/3 with respect to FDTD.
引用
收藏
页码:310 / 312
页数:3
相关论文
共 9 条
[1]  
Balanis C. A., 2012, Advanced engineering electromagnetics
[2]  
Collin R. E., 1966, Foundations for Microwave Engineering
[3]   Extensions to complex materials of the Fitzgerald model for the solution of electromagnetic problems [J].
De Flaviis, F ;
Noro, MG ;
Diaz, RE ;
Franceschetti, G ;
Alexopoulos, NG .
ELECTROMAGNETICS, 1998, 18 (01) :35-65
[4]  
DeFlaviis F, 1996, IEEE MTT-S, P1047, DOI 10.1109/MWSYM.1996.511209
[5]  
DEFLAVIIS F, 1997, IEEE AP S INT S MONT
[6]   A SYMMETRICAL CONDENSED NODE FOR THE TLM METHOD [J].
JOHNS, PB .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1987, 35 (04) :370-377
[7]  
Jones D, 1964, THEORY ELECTROMAGNET
[8]   THE WAVE-EQUATION FD TD METHOD FOR THE EFFICIENT EIGENVALUE ANALYSIS AND S-MATRIX COMPUTATION OF WAVE-GUIDE STRUCTURES [J].
KRUPEZEVIC, DV ;
BRANKOVIC, VJ ;
ARNDT, F .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1993, 41 (12) :2109-2115
[9]  
LUEBBERS K, 1993, FINITE DIFFERENCE TI