THE STANLEY-REISNER IDEALS OF POLYGONS AS SET-THEORETIC COMPLETE INTERSECTIONS

被引:6
作者
Barile, Margherita [1 ]
Terai, Naoki [2 ]
机构
[1] Univ Bari Aldo Moro, Dipartimento Matemat, I-70125 Bari, Italy
[2] Saga Univ, Fac Culture & Educ, Dept Math, Saga 840, Japan
关键词
Arithmetical rank; Monomial ideals; Set-theoretic complete intersections; ARITHMETICAL RANKS;
D O I
10.1080/00927871003597634
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the Stanley-Reisner ideal of the one-dimensional simplicial complex whose diagram is an n-gon is always a set-theoretic complete intersection in any positive characteristic.
引用
收藏
页码:621 / 633
页数:13
相关论文
共 9 条
[1]  
BARILE M, 2009, TOKYO J MATH, V32, P435, DOI DOI 10.3836/TJM/1264170241
[2]   ARITHMETICAL RANKS OF STANLEY-REISNER IDEALS OF SIMPLICIAL COMPLEXES WITH A CONE [J].
Barile, Margherita ;
Terai, Naoki .
COMMUNICATIONS IN ALGEBRA, 2010, 38 (10) :3686-3698
[3]   Arithmetical Ranks of Stanley-Reisner Ideals Via Linear Algebra [J].
Barile, Margherita .
COMMUNICATIONS IN ALGEBRA, 2008, 36 (12) :4540-4556
[4]  
Bruns W., 1998, COHEN MACAULAY RINGS
[5]   EVERY ALGEBRAIC SET IN SPACE IS INTERSECTION OF HYPERSURFACES [J].
EISENBUD, D ;
EVANS, EG .
INVENTIONES MATHEMATICAE, 1973, 19 (02) :107-112
[6]  
LYUBEZNIK G, 1984, COMPLETE INTERSECTIO, P214
[7]  
STANLEY RP, 2004, COMBINATORICS COMMUT
[8]   LOCALLY COMPLETE INTERSECTION STANLEY REISNER IDEALS [J].
Terai, Naoki ;
Yoshida, Ken-ichi .
ILLINOIS JOURNAL OF MATHEMATICS, 2009, 53 (02) :413-429
[9]  
VANDERWAERDEN BL, 1950, MODERN ALGEBRA, V2