Facile room-temperature growth of nanostructured CuBi2O4 for selective electrochemical reforming and photoelectrochemical hydrogen evolution reactions

被引:31
作者
Lin, Chia-Yu [1 ]
Lin, Shao-Yu [1 ]
Tsai, Ming-Chun [1 ]
Wu, Cheng-Hsien [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Chem Engn, 1 Univ Rd, Tainan 70101, Taiwan
关键词
CATALYTIC CONVERSION; FORMIC-ACID; WATER; OXIDATION; GLUCOSE; BIOMASS; NANOPARTICLES; HYDROCARBONS; PHOTOCATHODE; COMPOSITE;
D O I
10.1039/c9se00558g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Facile, room-temperature, and surfactant-free seed-mediated chemical bath deposition was developed to directly grow CuBi2O4 nanostructures on an electrode substrate for applications in electrochemical reforming of glucose and photoelectrochemical (PEC) hydrogen generation. The metal precursor concentration and Cu2+/Bi3+ molar ratio were found to be decisive factors in determining the structure of CuBi2O4, and single crystal CuBi2O4 submicron-square columns (microCuBi(2)O(4)), nano-square columns (nanoCuBi(2)O(4)), and c-axis oriented nano-square columns (c-nanoCuBi(2)O(4)) were selected for detailed electrochemical and PEC characterization. The results of Tauc plots and ultraviolet photoelectron spectroscopy (UPS) resolved the band structure of these CuBi2O4 compounds. Mott-Schottky and UPS analyses showed that these CuBi2O4 compounds had flat-band potentials of >1.10 V vs. RHE, which makes them promising photocathodes for PEC hydrogen generation. The synthesized CuBi2O4 compounds exhibited different levels of electrocatalytic activity towards electroreforming of glucose, in the order of nanoCuBi(2)O(4) > c-nanoCuBi(2)O(4) > microCuBi(2)O(4), which is attributed to the structure-dependent kinetics of the chemical reaction between glucose and electrochemically activated Cu species in CuBi2O4 at elevated anodic potentials. Additionally, all synthesized CuBi2O4 samples showed high selectivity (faradaic efficiency > 93%) for formate generation from electro-oxidative conversion of glucose. This study opens up a new avenue for the synthesis of nanostructured CuBi2O4 with promising bi-functionality towards PEC biomass reforming.
引用
收藏
页码:625 / 632
页数:8
相关论文
共 40 条
[1]   CuBi2O4 single crystal nanorods prepared by hydrothermal method: Growth mechanism and optical properties [J].
Abdulkarem, A. M. ;
Li, Jialin ;
Aref, A. A. ;
Ren, Lu ;
Elssfah, E. M. ;
Wang, Hui ;
Ge, Yunke ;
Yu, Ying .
MATERIALS RESEARCH BULLETIN, 2011, 46 (09) :1443-1450
[2]   Sonochemical synthesis of Bi2CuO4 nanoparticles for catalytic degradation of nonylphenol ethoxylate [J].
Anandan, Sambandam ;
Lee, Gang-Juan ;
Yang, Chuan-Kai ;
Ashokkumar, Muthupandian ;
Wu, Jerry J. .
CHEMICAL ENGINEERING JOURNAL, 2012, 183 :46-52
[3]   Efficient complete oxidation of acetaldehyde into CO2 over CuBi2O4/WO3 composite photocatalyst under visible and UV light irradiation [J].
Arai, Takeo ;
Yanagida, Masatoshi ;
Konishi, Yoshinari ;
Iwasaki, Yasukazu ;
Sugihara, Hideki ;
Sayama, Kazuhiro .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (21) :7574-7577
[4]   Comprehensive Evaluation of CuBi2O4 as a Photocathode Material for Photoelectrochemical Water Splitting [J].
Berglund, Sean P. ;
Abdi, Fatwa F. ;
Bogdanoff, Peter ;
Chernseddine, Abdelkrim ;
Friedrich, Dennis ;
van de Krol, Roel .
CHEMISTRY OF MATERIALS, 2016, 28 (12) :4231-4242
[5]   Screening of transition and post-transition metals to incorporate into copper oxide and copper bismuth oxide for photoelectrochemical hydrogen evolution [J].
Berglund, Sean P. ;
Lee, Heung Chan ;
Nunez, Paul D. ;
Bard, Allen J. ;
Mullins, C. Buddie .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (13) :4554-4565
[6]   p-Type CuBi2O4: an easily accessible photocathodic material for high-efficiency water splitting [J].
Cao, Dawei ;
Nasori, Nasori ;
Wang, Zhijie ;
Mi, Yan ;
Wen, Liaoyong ;
Yang, Ying ;
Qu, Shengchun ;
Wang, Zhanguo ;
Lei, Yong .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (23) :8995-9001
[7]   Gas sensing properties of p-type CuBi2O4 porous nanoparticulate thin film prepared by solution process based on metal-organic decomposition [J].
Choi, Yun-Hyuk ;
Kim, Dai-Hong ;
Hong, Seong-Hyeon .
SENSORS AND ACTUATORS B-CHEMICAL, 2018, 268 :129-135
[8]   CuBi2O4 Prepared by the Polymerized Complex Method for Gas-Sensing Applications [J].
Choi, Yun-Hyuk ;
Kim, Dai-Hong ;
Hong, Seong-Hyeon .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (17) :14901-14913
[9]   Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water [J].
Cortright, RD ;
Davda, RR ;
Dumesic, JA .
NATURE, 2002, 418 (6901) :964-967
[10]   Visible-Light-Controlled Oxidation of Glucose using Titania-Supported Silver Photocatalysts [J].
Da Via, Luigi ;
Recchi, Carlo ;
Davies, Thomas E. ;
Greeves, Nicholas ;
Lopez-Sanchez, Jose A. .
CHEMCATCHEM, 2016, 8 (22) :3475-3483