Sorption selectivity of birnessite particle edges: a d-PDF analysis of Cd(II) and Pb(II) sorption by δ-MnO2 and ferrihydrite

被引:61
作者
van Genuchten, Case M. [1 ]
Pena, Jasquelin [1 ]
机构
[1] Univ Lausanne, Inst Earth Surface Dynam, CH-1015 Lausanne, Switzerland
关键词
PAIR DISTRIBUTION FUNCTION; ABSORPTION FINE-STRUCTURE; OXIDE-WATER INTERFACES; MANGANESE OXIDE; SURFACE COMPLEXATION; CRYSTAL-STRUCTURE; ADSORPTION COMPLEXES; MODELING SORPTION; ORGANIC-MATTER; METAL SORPTION;
D O I
10.1039/c6em00136j
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Birnessite minerals (layer-type MnO2), which bear both internal (cation vacancies) and external (particle edges) metal sorption sites, are important sinks of contaminants in soils and sediments. Although the particle edges of birnessite minerals often dominate the total reactive surface area, especially in the case of nanoscale crystallites, the metal sorption reactivity of birnessite particle edges remains elusive. In this study, we investigated the sorption selectivity of birnessite particle edges by combining Cd(II) and Pb(II) adsorption isotherms at pH 5.5 with surface structural characterization by differential pair distribution function (d-PDF) analysis. We compared the sorption reactivity of delta-MnO2 to that of the nanomineral, 2-line ferrihydrite, which exhibits only external surface sites. Our results show that, whereas Cd(II) and Pb(II) both bind to birnessite layer vacancies, only Pb(II) binds extensively to birnessite particle edges. For ferrihydrite, significant Pb(II) adsorption to external sites was observed (roughly 20 mol%), whereas Cd(II) sorption was negligible. These results are supported by bond valence calculations that show comparable degrees of saturation of oxygen atoms on birnessite and ferrihydrite particle edges. Therefore, we propose that the sorption selectivity of birnessite edges follows the same order of that reported previously for ferrihydrite: Ca(II) < Cd(II) < Ni(II) < Zn(II) < Cu(II) < Pb(II).
引用
收藏
页码:1030 / 1041
页数:12
相关论文
共 76 条
[11]  
Dzombak D.A., 1990, SURFACE COMPLEXATION
[12]  
Egami T, 2003, PERGAMON MATER SER, V7, pVII
[13]   Spectroscopic studies of Pb(II)-sulfate interactions at the goethite-water interface [J].
Elzinga, EJ ;
Peak, D ;
Sparks, DL .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2001, 65 (14) :2219-2230
[14]   PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals [J].
Farrow, C. L. ;
Juhas, P. ;
Liu, J. W. ;
Bryndin, D. ;
Bozin, E. S. ;
Bloch, J. ;
Proffen, Th ;
Billinge, S. J. L. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (33)
[15]   X-ray absorption fine structure study of As(V) and Se(IV) sorption complexes on hydrous Mn oxides [J].
Foster, AL ;
Brown, GE ;
Parks, GA .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2003, 67 (11) :1937-1953
[16]  
GADDE RR, 1974, ABSTR PAP AM CHEM S, P142
[17]   Solid-state transformation of nanocrystalline phyllomanganate into tectomanganate: influence of initial layer and interlayer structure [J].
Grangeon, Sylvain ;
Lanson, Bruno ;
Lanson, Martine .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 2014, 70 :828-838
[18]   Zn sorption modifies dynamically the layer and interlayer structure of vernadite [J].
Grangeon, Sylvain ;
Manceau, Alain ;
Guilhermet, Julien ;
Gaillot, Anne-Claire ;
Lanson, Martine ;
Lanson, Bruno .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2012, 85 :302-313
[19]   Two-dimensional detector software: From real detector to idealised image or two-theta scan [J].
Hammersley, AP ;
Svensson, SO ;
Hanfland, M ;
Fitch, AN ;
Hausermann, D .
HIGH PRESSURE RESEARCH, 1996, 14 (4-6) :235-248
[20]   Investigation of Surface Structures by Powder Diffraction: A Differential Pair Distribution Function Study on Arsenate Sorption on Ferrihydrite [J].
Harrington, Richard ;
Hausner, Douglas B. ;
Bhandari, Narayan ;
Strongin, Daniel R. ;
Chapman, Karena W. ;
Chupas, Peter J. ;
Middlemiss, Derek S. ;
Grey, Clare P. ;
Parise, John B. .
INORGANIC CHEMISTRY, 2010, 49 (01) :325-330