Reconstruction of dielectrics from experimental data via a hybrid globally convergent/adaptive inverse algorithm

被引:20
作者
Beilina, Larisa [1 ,2 ]
Klibanov, Michael V. [3 ]
机构
[1] Chalmers Univ Technol, Dept Math Sci, SE-42196 Gothenburg, Sweden
[2] Gothenburg Univ, SE-42196 Gothenburg, Sweden
[3] Univ N Carolina, Dept Math & Stat, Charlotte, NC 28223 USA
关键词
SCATTERING PROBLEM;
D O I
10.1088/0266-5611/26/12/125009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The validity of the synthesis of a globally convergent numerical method with the adaptive FEM technique for a coefficient inverse problem is verified on time-resolved experimental data. The refractive indices, locations and shapes of dielectric abnormalities are accurately imaged.
引用
收藏
页数:30
相关论文
共 34 条
[1]  
Ainsworth M., 2000, PUR AP M-WI
[2]   Solution of the three-dimensional acoustic inverse scattering problem. The modified Novikov algorithm [J].
Alekseenko, N. V. ;
Burov, V. A. ;
Rumyantseva, O. D. .
ACOUSTICAL PHYSICS, 2008, 54 (03) :407-419
[3]   Music-type electromagnetic imaging of a collection of small three-dimensional inclusions [J].
Ammari, Habib ;
Iakovleva, Ekaterina ;
Lesselier, Dominique ;
Perrusson, Gaele .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (02) :674-709
[4]  
[Anonymous], 1985, Appl. Math. Sci.
[5]  
[Anonymous], 2000, MATH ITS APPL
[6]  
[Anonymous], 1998, PARTIAL DIFFERENTIAL
[7]  
[Anonymous], 2003, APPL COMPUT MATH-BAK
[8]   An adaptive hybrid FEM/FDM method for an inverse scattering problem in scanning acoustic microscopy [J].
Beilina, L ;
Clason, C .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (01) :382-402
[9]   A posteriori error estimation in computational inverse scattering [J].
Beilina, L ;
Johnson, C .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (01) :23-35
[10]  
Beilina L., 2001, GAKUTO INT SERIES MA