Carbon Nanodot Additives Realize High-Performance Air-Stable p-i-n Perovskite Solar Cells Providing Efficiencies of up to 20.2%

被引:107
作者
Hsu, Hsiang-Lin [1 ,2 ]
Hsiao, Hsiang-Tse [3 ]
Juang, Tzong-Yuan [4 ]
Jiang, Bing-Huang [1 ,2 ]
Chen, Sheng-Chi [3 ]
Jeng, Ru-Jong [1 ,2 ]
Chen, Chih-Ping [3 ]
机构
[1] Natl Taiwan Univ, Inst Polymer Sci & Engn, Taipei 10617, Taiwan
[2] Natl Taiwan Univ, Adv Res Ctr Green Mat Sci & Technol, Taipei 10617, Taiwan
[3] Ming Chi Univ Technol, Dept Mat Engn, New Taipei 24301, Taiwan
[4] China Med Univ, Dept Cosmeceut, Taichung 40402, Taiwan
关键词
additives; carbon nanodots; perovskite solar cells; p-i-n; power conversion efficiency; LEWIS-BASES; PHOTOLUMINESCENCE; GROWTH;
D O I
10.1002/aenm.201802323
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbonized bamboo-derived carbon nanodots (CNDs) as efficient additives for application in perovskite solar cells (PSCs) are reported. These carboxylic acid- and hydroxyl-rich CNDs interact with the perovskite through hydrogen bonds and, thereby, promote the carriers' lifetimes and realize high-performance p-i-n PSCs having the structure indium tin oxide/NiOx/CH3NH3PbI3 (MAPbI(3))/PC61BM/BCP/Ag. As a result of interactions between the CNDs and the perovskite, the presence of the nonvolatile CND additive increases the power conversion efficiency (PCE) of the PSC from 14.48% +/- 0.39% to 16.47% +/- 0.26%. Furthermore, adding urea, a Lewis base, increases the PCE to 20.2%-the result of a significant increase in the crystal size and a lower content of grain boundary defects and, therefore, longer carrier lifetimes. Cells containing these two additives (without encapsulation) exhibit excellent shelf-life and air-stability, maintaining their high PCEs after storage in air-at a temperature of 25 degrees C and a humidity of 40%-for over 500 h. This performance is among of the best ever reported for p-i-n PSC devices incorporating carbon-based additives.
引用
收藏
页数:9
相关论文
共 46 条
[1]   Maximizing and stabilizing luminescence from halide perovskites with potassium passivation [J].
Abdi-Jalebi, Mojtaba ;
Andaji-Garmaroudi, Zahra ;
Cacovich, Stefania ;
Stavrakas, Camille ;
Philippe, Bertrand ;
Richter, Johannes M. ;
Alsari, Mejd ;
Booker, Edward P. ;
Hutter, Eline M. ;
Pearson, Andrew J. ;
Lilliu, Samuele ;
Savenije, Tom J. ;
Rensmo, Hakan ;
Divitini, Giorgio ;
Ducati, Caterina ;
Friend, Richard H. ;
Stranks, Samuel D. .
NATURE, 2018, 555 (7697) :497-+
[2]   The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells [J].
Chiang, Chien-Hung ;
Nazeeruddin, Mohammad Khaja ;
Gratzel, Michael ;
Wu, Chun-Guey .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (03) :808-817
[3]   Promises and challenges of perovskite solar cells [J].
Correa-Baena, Juan-Pablo ;
Saliba, Michael ;
Buonassisi, Tonio ;
Graetzel, Michael ;
Abate, Antonio ;
Tress, Wolfgang ;
Hagfeldt, Anders .
SCIENCE, 2017, 358 (6364) :739-744
[4]   High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors [J].
Deschler, Felix ;
Price, Michael ;
Pathak, Sandeep ;
Klintberg, Lina E. ;
Jarausch, David-Dominik ;
Higler, Ruben ;
Huettner, Sven ;
Leijtens, Tomas ;
Stranks, Samuel D. ;
Snaith, Henry J. ;
Atatuere, Mete ;
Phillips, Richard T. ;
Friend, Richard H. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (08) :1421-1426
[5]  
Dong-Jin S., 2015, CHEMSUSCHEM, V8, P2414
[6]   Anticorrelation between Local Photoluminescence and Photocurrent Suggests Variability in Contact to Active Layer in Perovskite Solar Cells [J].
Eperon, Giles E. ;
Moerman, David ;
Ginger, David S. .
ACS NANO, 2016, 10 (11) :10258-10266
[7]   A Redox-Based Resistive Switching Memory Device Consisting of Organic-Inorganic Hybrid Perovskite/Polymer Composite Thin Film [J].
Ercan, Ender ;
Chen, Jung-Yao ;
Tsai, Ping-Chun ;
Lam, Jeun-Yan ;
Huang, Sophia Chao-Wei ;
Chueh, Chu-Chen ;
Chen, Wen-Chang .
ADVANCED ELECTRONIC MATERIALS, 2017, 3 (12)
[8]   The emerging roles of carbon dots in solar photovoltaics: a critical review [J].
Essner, Jeremy B. ;
Baker, Gary A. .
ENVIRONMENTAL SCIENCE-NANO, 2017, 4 (06) :1216-1263
[9]   Low-temperature, simple and efficient preparation of perovskite solar cells using Lewis bases urea and thiourea as additives: stimulating large grain growth and providing a PCE up to 18.8% [J].
Hsieh, Cheng-Ming ;
Liao, Yung-Sheng ;
Lin, Yan-Ru ;
Chen, Chih-Ping ;
Tsai, Cheng-Min ;
Diau, Eric Wei-Guang ;
Chuang, Shih-Ching .
RSC ADVANCES, 2018, 8 (35) :19610-19615
[10]   High-performance and high-durability perovskite photovoltaic devices prepared using ethylammonium iodide as an additive [J].
Hsu, Hsiang-Lin ;
Chang, Ching-Chih ;
Chen, Chih-Ping ;
Jiang, Bing-Huang ;
Jeng, Ru-Jong ;
Cheng, Chien-Hong .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (17) :9271-9277