FRACTIONAL NAVIER-STOKES EQUATIONS

被引:21
作者
Cholewa, Jan W. [1 ]
Dlotko, Tomasz [1 ]
机构
[1] Univ Silesia Katowice, Inst Math, PL-40007 Katowice, Poland
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2018年 / 23卷 / 08期
关键词
Navier-Stokes equations; abstract parabolic equations; initial-boundary value problems for pseudodifferential operators; WEAK SOLUTIONS; UNIQUENESS; OPERATOR; POWERS; LR;
D O I
10.3934/dcdsb.2017149
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider fractional Navier-Stokes equations in a smooth bounded domain Omega subset of R-N, N >= 2. Following the geometric theory of abstract parabolic problems we give the detailed analysis concerning existence, uniqueness, regularization and continuation properties of the solution. For the original Navier-Stokes problem we construct next global solution of the Leray-Hopf type satisfying also Duhamel's integral formula. Focusing finally on the 3-D model with zero external force we estimate a time after which the latter solution regularizes to strong solution. We also estimate a time such that if a local strong solution exists until that time, then it exists for ever.
引用
收藏
页码:2967 / 2988
页数:22
相关论文
共 51 条
[1]  
Alix M.S., 2001, THEORY FRACTIONAL PO
[2]  
Amann H., 1995, Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Linear Theory,, V89
[3]  
[Anonymous], 2001, The Navier-Stokes equations. An elementary functional analytic approach
[4]  
[Anonymous], 1969, Quelques methodes de resolution des problemes aux limites non lineaires
[5]  
[Anonymous], 2012, Semigroups of Linear Operators and Applications to Partial Differential Equations, DOI DOI 10.1007/978-1-4612-5561-1
[6]  
[Anonymous], 1986, Annali di Matematica Pura ed Applicata, DOI [DOI 10.1007/BF01762360.MR916688, DOI 10.1007/BF01762360]
[7]  
[Anonymous], 1959, Annali di Matematica Pura ed Applicata, DOI 10.1007/BF02410664
[8]  
[Anonymous], 1989, Geometric Theory of Semilinear Parabolic Partial Differential Equations, DOI DOI 10.1007/BFB0089647
[9]  
[Anonymous], NONLINEAR PROBLEMS
[10]   Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations [J].
Arrieta, JM ;
Carvalho, AN .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (01) :285-310