Semi-parametric second-order efficient estimation of the period of a signal

被引:3
作者
Castillo, I. [1 ]
机构
[1] Vrije Univ Amsterdam, Dept Math, NL-1081 HV Amsterdam, Netherlands
关键词
exact minimax asymptotics; penalized maximum likelihood; second-order efficiency; semi-parametric estimation; unknown period;
D O I
10.3150/07-BEJ5077
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is concerned with the estimation of the period of an unknown periodic function in Gaussian white noise. A class of estimators of the period is constructed by means of a penalized maximum likelihood method. A second-order asymptotic expansion of the risk of these estimators is obtained. Moreover, the minimax problem for the second-order term is studied and an estimator of the preceding class is shown to be second order efficient.
引用
收藏
页码:910 / 932
页数:23
相关论文
共 18 条
[1]  
[Anonymous], 1998, ASYMPTOTIC STAT, DOI DOI 10.1017/CBO9780511802256
[2]  
BICKEL PJ, 1998, EFICIENT ADAPTIVE ES
[3]  
CASTILLO I, 2006, MATH METHDS STAT, V15, P146
[4]  
CASTLE P, 2001, EUROPEAN PHARM REV, V6, P41
[5]   Hidden frequency estimation with data tapers [J].
Chen, ZG ;
Wu, KH ;
Dahlhaus, R .
JOURNAL OF TIME SERIES ANALYSIS, 2000, 21 (02) :113-142
[6]  
DALALYAN A, 2007, IN PRESS MATH METHOD
[7]   Penalized maximum likelihood and semiparametric second-order efficiency [J].
Dalalyan, AS ;
Golubev, GK ;
Tsybakov, AB .
ANNALS OF STATISTICS, 2006, 34 (01) :169-201
[8]   Efficient semiparametric estimation of the periods in a superposition of periodic functions with unknown shape [J].
Gassiat, Elisabeth ;
Levy-Leduc, Celine .
JOURNAL OF TIME SERIES ANALYSIS, 2006, 27 (06) :877-910
[9]  
Gill R. D., 1995, BERNOULLI, V1, P59, DOI DOI 10.2307/3318681
[10]  
GOLUBEV G, 2002, MATH METHODS STAT, V11, P98, DOI UNSP MR1900975