This study examined (1) the effect of the accelerated seed ageing on cucumber germination with treatments: Bacillus subtilis QST713 or Pseudomonas fluorescens CA in 1% methylcellulose and fungicides difenoconazole, carboxin or pyraclostrobin in 5% polyvinyl alcohol, and (2) the impact on disease severity of gummy stem blight (GSB) caused by Didymella bryoniae by the seed treatments and foliar spray application of methylcellulose-formulated B. subtilis or P. fluorescens. Difenoconazole, pyraclostrobin and microorganisms suppressed growth of D. bryoniae in a laboratory dual culture; carboxin had no effect on D. bryoniae growth. Germination of fungicide-treated seed was unaffected by accelerated seed ageing. Greenhouse: GSB disease severity with PVA and non-treated seed was 89% and 84%, respectively, whereas, difenoconazole, carboxin and pyraclostrobin, was significantly reduced, 56%, 53% and 40%, respectively. Germination of Bacillus-treated seed was unaffected by accelerated seed ageing, but was significantly reduced with Pseudomonas-treated seed. GSB disease severity with B. subtilis or P. fluorescens-treated seed was inconsistent; however, foliar spray application of B. subtilis significantly reduced GSB. Accelerated seed ageing exposed a significant negative impact on seed germination with P. fluorescens. Based on the accelerated ageing test, P. fluorescens-treated cucumber seed is detrimental to seed survival and therefore, is not a candidate for biocontrol activities for cucumber requiring seed storage.