An su(1,1) algebraic approach for the relativistic Kepler-Coulomb problem

被引:9
作者
Salazar-Ramirez, M. [1 ]
Martinez, D. [2 ]
Mota, R. D. [3 ]
Granados, V. D. [1 ]
机构
[1] Inst Politecn Nacl, Escuela Super Fis & Matemat, Unidad Profes Adolfo Lopez Mateos, Mexico City 07738, DF, Mexico
[2] Univ Autonoma Ciudad Mexico, Mexico City 07160, DF, Mexico
[3] IPN, Unidad Profes Interdisciplinaria Ingn & Tecnol Av, Mexico City 07340, DF, Mexico
关键词
HYDROGEN-ATOM; DIRAC-COULOMB; NONUNITARY REPRESENTATIONS; UNIFIED TREATMENT; LIE-ALGEBRAS; SUSY QM; SCATTERING; EQUATION; SUPERSYMMETRY; SYSTEMS;
D O I
10.1088/1751-8113/43/44/445203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We apply the Schrodinger factorization method to the radial second-order equation for the relativistic Kepler-Coulomb problem. From these operators we construct two sets of one-variable radial operators which are realizations for the su(1, 1) Lie algebra. We use this algebraic structure to obtain the energy spectrum and the supersymmetric ground state for this system.
引用
收藏
页数:9
相关论文
共 40 条
[1]  
ADAMS BG, 1987, ADV QUANTUM CHEM, V19, P1
[2]  
ADAMS BG, 1994, ALGEBRAIC APPROACH S
[3]   RESONANCE WIDTHS AND POSITIONS BY AN ALGEBRAIC APPROACH [J].
ALHASSID, Y ;
IACHELLO, F ;
LEVINE, RD .
PHYSICAL REVIEW LETTERS, 1985, 54 (16) :1746-1749
[4]   ALGEBRAIC APPROACH TO THE SCATTERING MATRIX [J].
ALHASSID, Y ;
ENGEL, J ;
WU, J .
PHYSICAL REVIEW LETTERS, 1984, 53 (01) :17-20
[5]   ALGEBRAIC APPROACH TO DISSOCIATION FROM BOUND-STATES [J].
ALHASSID, Y ;
ENGEL, J ;
IACHELLO, F .
PHYSICAL REVIEW LETTERS, 1986, 57 (01) :9-12
[6]  
[Anonymous], 1964, RELATIVISTIC QUANTUM
[7]  
BIEDENHARN LC, 1965, ANN I HENRI POINCARE, V3, pA13
[8]  
BOHM A, 1988, DYNAMICAL GROUPS SPE, V2
[9]  
BOHM A, 1988, DYNAMICAL GROUPS SPE, V1
[10]   ON THE DIRAC-KEPLER PROBLEM - THE JOHNSON-LIPPMANN OPERATOR, SUPERSYMMETRY, AND NORMAL-MODE REPRESENTATIONS [J].
DAHL, JP ;
JORGENSEN, T .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1995, 53 (02) :161-181