Plane partitions VI: Stembridge's TSPP theorem

被引:21
作者
Andrews, GE
Paule, P
Schneider, C
机构
[1] Johannes Kepler Univ Linz, Symbol Computat Res Inst, A-4040 Linz, Austria
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.aam.2004.07.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a new proof of Stembridge's theorem which validated the Totally Symmetric Plane Partitions (TSPP) Conjecture. The overall strategy of our proof follows the same general pattern of determinant evaluation as discussed by the first named author in a series of papers. The resulting hypergeometric multiple sum identities turn out to be quite complicated. Their correctness is proved by applying new algorithmic methods from symbolic summation. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:709 / 739
页数:31
相关论文
共 24 条
[1]   RATIONAL SOLUTIONS OF LINEAR-DIFFERENTIAL AND DIFFERENCE-EQUATIONS WITH POLYNOMIAL COEFFICIENTS [J].
ABRAMOV, SA .
USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1989, 29 (06) :7-12
[2]   PLANE PARTITIONS .2. EQUIVALENCE OF BENDER-KNUTH AND MACMAHON CONJECTURES [J].
ANDREWS, GE .
PACIFIC JOURNAL OF MATHEMATICS, 1977, 72 (02) :283-291
[3]   PLANE PARTITIONS .5. THE TSSCPP CONJECTURE [J].
ANDREWS, GE .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1994, 66 (01) :28-39
[4]   PLANE PARTITIONS(III) - WEAK MACDONALD CONJECTURE [J].
ANDREWS, GE .
INVENTIONES MATHEMATICAE, 1979, 53 (03) :193-225
[5]  
ANDREWS GE, 2004, 0408 RISC LINZ
[6]  
ANDREWS GE, 1979, ADV MATH SUPPL STUD, V1, P131
[7]  
Andrews George E., 1987, AEQUATIONES MATH, V33, P230, DOI [10.1007/BF01836165, DOI 10.1007/BF01836165]
[8]   An extension of Zeilberger's fast algorithm to general holonomic functions [J].
Chyzak, F .
DISCRETE MATHEMATICS, 2000, 217 (1-3) :115-134
[9]   PARTIAL CYLINDRICAL ALGEBRAIC DECOMPOSITION FOR QUANTIFIER ELIMINATION [J].
COLLINS, GE ;
HONG, H .
JOURNAL OF SYMBOLIC COMPUTATION, 1991, 12 (03) :299-328
[10]  
MALLINGER C, 1996, THESIS RISC LINZ